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GNSS is the technology of choice 
in most applications due to its 
dedicated infrastructure, Earth 

coverage, medium to high accuracy, 
and large market penetration. Most of 
the applications, including those we 
download on our smartphones, are in 
the category of Location Based Services 
(LBS). However, there are many other 
services and businesses that rely heavily 
on GNSS performance and reliability. 
For instance, Intelligent Transporta-
tion Systems (ITS) make extensive use 
of GNSS technology and this depen-
dence will only grow in the future. It’s 
not just that GNSS has become ubiqui-
tous in our daily life, but many critical 
infrastructures worldwide have some 
sort of reliance on it. In addition to 
the already mentioned transportation 
systems, GNSS plays a significant role 
in synchronization in the power grid, 
high frequency trading operations, and 

synchronization of distant wireless com-
munications towers. 

This growing dependence on GNSS 
within critical (and non-critical) infra-
structures has posed some concerns on 
the potential vulnerabilities of GNSS 
(see Amin et alia, “Guest Editorial: Vul-
nerabilities, threats, and authentication 
in satellite-based navigation systems,” 
in Additional Resources). As a conse-
quence, there is a need for protecting 
GNSS against intentional and uninten-
tional interference sources since disrup-
tion of GNSS can lead to catastrophic 
consequences.

The jamming threat, a specific form 
of intentional interference, is real and 
its occurrence has been documented in 
many occasions. Jamming devices are 
illegal in most (not all) countries, yet 
they are very easy and cheap to buy. Sim-
ple jammers can disrupt GNSS-based 
services in wide geographical areas 

Although strong jamming can overwhelm much weaker GNSS signals, receiver performance can be 
significantly improved by implementing interference mitigation techniques. With this article we briefly 
discuss the most common approaches for interference mitigation and frame them with respect to the 
principles of Interference Cancellation (IC) and robust estimation. Additionally, we present initial results 
obtained using Robust Transform Domain (RTD) mitigation techniques. These techniques provide effective 
alternatives to Transform Domain excision, enabling receiver operations in the close proximity of a jammer.
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(even in several kilometers), a fact that has certainly triggered 
research into anti-jamming techniques. Not only is jamming 
a threat, but other sources of unintentional interference can 
severely compromise GNSS performance.

This article aims at providing a discussion of classical miti-
gation techniques, while providing links to the field of  robust 
statistics. This link provides a principled way of analyzing exist-
ing mitigation techniques, as well as conceiving new method-
ologies that rely on solid statistical principles. Purposely, we do 
not discuss interference detection techniques, leaving all the 
discussion to interference mitigation. Finally, the article intro-
duces Transform Domain (TD) techniques and their robust 
versions, which are compared against time domain techniques 
using real data gathered in an experimental test. 

The IC Principle
In this article, we are interested in both intentional and unin-
tentional interference and, in either situations, the signal at the 
receiver antenna can be modeled as 

where xθ(t) is the legitimate signal, made of different compo-
nents coming from the visible GNSS satellites, i(t) represents 
the interference signal, and w(t) is the random contribution of 
the thermal noise. Notice that xθ(t) is parameterized by θ, a vec-
tor containing the unknown parameters of the received signals 
such as their amplitude, time-delay, Doppler-shift, or carrier-
phase. For the i-th satellite signal, we define the parameters as 
Ai, τi, f d,i, and  φi  respectively. Roughly speaking, the estimates 
of θ are used to solve for the position at the receiver side. 

Most of the commercial jamming devices transmit rather 
simple periodic signals whose frequency is time-varying, fI(t). 
Therefore, a rather simple but general model is 

where AI is the amplitude of the interfering signal, fRF is the 
central Radio Frequency (RF), fI(t) is the time-varying interfer-
ence frequency, and φI represents its phase. Depending on the 
behavior of fI(t) different jamming signals can be conceived 
such as Continuous Wave (CW) jammers when fI(t) = fI is a 
constant, or chirp-like jamming signals when fI(t) evolves over 
time following a saw-tooth pattern. Intuitively, the faster the 
variability and transitions of fI(t), the harder it is to mitigate 
interference at the receiver side.

At the receiver, we are interested in dig-
ital signal processing methods to counter-
act interferences, therefore we assume that 
y(t) is sampled at a rate (fs = 1/Ts) satisfying 
the Nyquist criterion to yield its discrete-
time version:

A common approach to interference 
mitigation is to formulate it, statistically 

speaking, as an estimation problem. After detecting the inter-
ference, the set of unknown parameters characterizing the 
interfering signal needs to be estimated to enable Interference 
Cancellation (IC) at the receiver. A reconstructed version of the 
interference term, , is subtracted from the observations such 
that a clean signal version is used afterwards by the receiver, 

. The principle is depicted in Figure 1.
In the context of the standard operations of a GNSS receiver, 

IC can be better understood as the modification of the objective 
function in acquisition and tracking. Typically, GNSS receivers 
estimate the parameters of the received signals using a variety 
of methods that implement a Least Squares (LS) solution, where 
the input samples are compared with locally generated signal 
replicas. In particular, code delay, Doppler frequency and car-
rier phase are estimated as:

where J(τ, fd, φ) is the cost function defined as

Notice that the subindex i denoting the satellite signal is 
hereafter omitted since we consider independent acquisition/
tracking among satellites. c(.) denotes the spreading sequence 
for the satellite of interest and N the total number of samples 
used in the process. Cost function (5) can be minimized inde-
pendently from A which can be estimated in a separate step. For 
this reason, the determination of A is not explicitly indicated in 
(4). In particular, it is possible to show that the minimization 
of (5) is equivalent to the maximization of the absolute value of 
the Cross-Ambiguity Function (CAF) defined as

In the IC case, the cost function is modified after gaining 
knowledge of the interference. More precisely, the signal model 
is extended in order to account for the interference term and 
the cost function is rewritten as 

where  is the reconstructed version of the interference, 
which requires detection and estimation as for Figure 1.

FIGURE 1  Principle of IC: the parameters characterizing the model for the interfering source are 
estimated from the available data. Then, the reconstructed interference is subtracted from 
the data, yielding a clean version for standard processing.
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Using these definitions, the main IC techniques can be 
defined. For instance, a popular method for pulsed interference 
mitigation, due its simplicity, is pulse blanking (see article by 
Borio, 2016, Additional Resources). At a glance, pulse blank-
ing detects the presence of interference by identifying abnor-
mally large values in the pre-correlation samples. This can be 
easily achieved by comparing  to a predefined threshold 
TPB. Then, the interfered samples are set to zero such that they 
are not used throughout the receiver. Mathematically, the esti-
mated interference is 

which can be plugged in cost function (7) to understand how 
pulse blanking operates.

Robust Estimation
When the IC principle is used, the interfering term is treated 
as a signal component whose parameters should be estimated. 
A different approach for the design of interference mitigation 
techniques can be derived from the theory of robust statistics 
(see, for example, Huber and Ronchetti, Additional Resources). 
In this case, the receiver does not try to estimate the jamming 
signal but adopts processing strategies which can produce rea-
sonable results even in the presence of interference. 

The term “robust” is often used in the literal sense, in many 
cases just according to the definition provided by the diction-
ary. This has often generated confusion and algorithms defined 
as “robust” are not actually “statistically robust”. Robustness 
has to be intended here as a mathematical property of a system 
and can be assessed using rigorous criteria. An analogy can 
be made with the concept of Bounded Input Bounded Output 
(BIBO) stability: a system is BIBO stable if a bounded output is 
obtained for every bounded input. In a similar way, Qualitative 
Robustness states that a robust estimator is such that bounded 
departures from the assumed model do not cause it to pro-
vide aberrant results (see Hampel in Additional Resources). 
For instance, if an estimator assumes a Gaussian model for 
the observations, but outliers — which break the Gaussian 
assumption — are received and used, we expect the estimator 
to be relatively insensitive to them if claimed to be robust. For 
location estimators of the type

i.e. that depend on a linear combination of input samples, y[n], 
processed by the non-linearity, ρ(.), robustness is obtained when 
ρ(.) is bounded. When pulse blanking is used, the CAF of the 
input samples is computed as:

where, in accordance to (8), the non-linearity is 

PB

is clearly a bounded function of the input samples. In this way, 
pulse blanking is not only a form of IC but is also a robust 
estimator for the CAF.

Although techniques implementing the IC principle can 
be robust, robust statistics provides, in general, a shift in the 
design paradigm for interference/jamming mitigation tech-
niques. In particular, the focus is no longer in the definition of 
the most appropriate model for the interfering term, i(t), but on 
the search for robust procedures that allow the estimators to 
combat i(t) without actually estimating (or even detecting) it. A 
possible design strategy is to reformulate model (3) as

where interference and noise are grouped together, with 

In the robust estimation framework the goal is to adopt models 
for the aggregate term,  which lead to robust estimators. In 
robust statistics, a model is considered as well, but its statistical 
assumptions are relaxed such that the estimators have some 
flexibility to process outlier measurements, which otherwise 
would make non-robust estimators diverge. In this respect, 
there exist several noise models which lead to robust estimators 
in classical robust statistical problems. It turns out that these 
models are also effective in the context of jamming mitigation 
in GNSS receivers. These models, which mainly characterize 
the statistics of  include:
• Laplacian model: the aggregate noise term is assumed to 

follow a Laplace distribution.
• Cauchy model: the aggregate noise term is assumed to fol-

low a Cauchy distribution.
• Student’s t model: the aggregate noise term is assumed to 

follow a t-distribution.
Other noise models could be considered for the design of 

different jamming mitigation techniques. Notice that, typically 
these distributions exhibit heavy-tail behavior, as opposite to 
the standard Gaussian assumption. From the aggregate noise 
model, robust mitigation techniques are finally obtained. We 
recently considered (see the paper presented by one of the 
authors at the 2017 European Navigation Conference and listed 
in Additional Resources):
• The usage of Zero-Memory Non-Linear (ZMNL) functions 

to pre-process the input samples.
• Non-linear correlators based, for example, on the median 

(which results from the  Laplace noise assumption) and on 
the sample myriad (from the assumption of Cauchy noise).
The sample myriad is a location estimator, as the mean and 

the median, and it is defined, for real input samples, as

GNSS ANTI-JAMMING
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where K is the linearity parameter of the Cauchy distribution 
(this is better explained in the following). A clear parallelism 
with the sample mean can be made: the mean is the argu-
ment which minimizes the sum of squares of the residuals, 

 Additional details on the sample myriad can be found, 
for example, in the book by G. R. Arce listed in Additional 
Resources.

ZMNL functions can be directly obtained from the aggre-
gate noise model as

where f(y) is the probability density function (pdf) adopted 
to describe  In this case, alternative versions of (10) are 
obtained by replacing ρPB(.) with ρ(.). In the ZMNL function 
case, the input samples are simply pre-processed using  ρ(.) 
before being used by the standard correlator blocks. In this 
way, a robust CAF similar to (10) is obtained. In the second 
approach, it is recognized that the CAF is a weighted mean. 
The mean is inherently non-robust and thus, it can be replaced 
by robust operators such as the median and the myriad. For 
example, in the median case, the CAF in (6) becomes:

Note that the samples at the input of the MEDIAN operator in 
(15) are complex. In this case, it is assumed that two indepen-
dent medians are computed on the real and imaginary parts of 
the samples. These approaches introduce significant robustness 
in the case of pulsed jamming and allow receiver operations 
even in the close proximity of a jammer.

Time, Frequency, Scale and All the Others
By representing the input samples in a 
different domain, an advanced class of 
interference mitigation techniques arises. 
A classic example is the usage of the Dis-
crete Fourier Transform (DFT) and its fast 
implementation, the Fast Fourier Trans-
form (FFT), to project the input samples, 
y[n], into the frequency domain. In this 
way, a new set of samples, Y(k), is obtained. 
Here, the index, k, is used to denote the set 
of discrete frequencies. The rationale of 
operating in a different domain is that, in 
such domain, the interfering term, i[n], 
admits a sparse representation. This implies 
that, I(k), the TD representation of i[n], is 
significantly different from zero only for a 
relatively small number of values of k.  I(k)
will thus appear as a set of pulses which can 
be easily blanked in the TD.

Depending on the domain of the trans-
formation, it is possible to classify the dif-
ferent interference mitigation techniques as 

in Figure 2. The figure also takes into account the receiver stages 
where the techniques are actually implemented. In particular, 
interference mitigation techniques are classified according to 
their implementation with respect to the correlation operation 
as
• Pre-correlation: the algorithm operates before the corre-

lation process takes place. In this way, mitigation is per-
formed for all the processing channels at once and the char-
acteristics of the useful received signals are not taken into 
account.

• In-correlation: mitigation is performed by modifying the 
standard correlation process.

• Post-correlation: mitigation is applied at the output of the 
correlators. In this case, different processing can be applied 
to the signals from different channels.
Time domain techniques are those that do not require a 

preliminary transformation to bring the input samples in a 
different domain. In this respect, adaptive notch filtering and 
pulse blanking are time domain techniques commonly used 
for interference mitigation, both implementing the IC prin-
ciple. Adaptive notch filtering is an effective technique where 
the instantaneous frequency of the jamming signal is continu-
ously estimated. The region of the spectrum occupied by the 
jamming signal is then removed through filtering. Although 
notch filtering performs the excision of a narrow frequency 
band, it is implemented using a recurrence equation in the time 
domain and thus it does not require a signal transformation. 
Alternative classifications can be adopted. Pulse blanking can 
be seen as a robust technique (as discussed earlier), whereas 
notch filtering is very sensitive to model mismatches. The notch 

FIGURE 2  Classification of different interference mitigation techniques as a function of the 
domain of operation and of the receiver stage.
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filter can only operate if the interfering 
signal is instantaneously narrowband 
and if its center frequency is slowly vary-
ing with time. Other examples of time 
domain approaches used for interfer-
ence mitigation are the usage of ZMNL 
functions, as described above, and the 
adoption of a Kalman Filter  (see Mitch 
et alia in Additional Resources) to track 
and reconstruct the jamming signal. 
This latter approach is, in general, non-
robust and sensitive to deviations from 
the model adopted for the design of the 
Kalman Filter.

Time domain pre-correlation tech-
niques are, in general, low-complexity 
and approaches such as pulse blanking 
and notch filtering are now commonly 
implemented in professional and mass-
market receivers. Time domain process-
ing can be integrated with the correla-
tor and, for example, robust correlators 
discussed in the previous section can be 
adopted. The complexity depends on the 
approach adopted. The median can be 
implemented in a quite efficient way and 
its complexity is comparable with that 
of the mean performed in standard cor-
relators. The computation of the sample 
myriad requires an iterative procedure 
which can be computationally expensive. 

Post-correlation mitigation tech-
niques are not explicitly indicated in Fig-
ure 2. Techniques operating at this stage 
tend to be “mixed” in the sense that post-
correlation information is used to drive 
pre-correlation processing. Moreover, 
after correlation, the input samples are 
significantly down-sampled and, for this 
reason, adoption of different domains 
is usually not considered. Remarkably, 
post-correlation techniques are typically 
ineffective in terms of jamming suppres-
sion, the main reason being that correla-
tion with the local code causes a spread 
out of the (uncorrelated) interference, 
which makes it harder to be mitigated. 
Degradations in post-correlation prod-
ucts, such as the estimated Carrier-to-
Noise power spectral density ratio (C/
N0), can, however, be exploited for jam-
ming detection. 

In TD approaches, considered in 
the bottom row of Figure 2, the input 

signal, y[n], is pro-
jected into a differ-
ent domain in the 
first place. These 
domains include 
frequency, with the 
usage of the DFT/
FFT; joint t ime-
frequency repre-
sentations based, 
for example, on the 
Short Time Fourier 
Transform (STFT) 
or on the Wigner-
Ville distribution; 
a nd joi nt  t i me-
scale representa-
tions based on the 
Discrete Wavelet Transform (DWT). 
The Karhunen-Loeve Transform (KLT) 
has also been considered as a possible 
tool to obtain TD representations of 
the received GNSS signal, y[n]. Once 
in the TD, it is possible to apply tech-
niques similar to those adopted in the 
time domain. TD excision is probably 
the most commonly adopted approach 
and it operates in a way analog to pulse 
blanking. If the absolute value of a sam-
ple in the TD is larger than a threshold, 
it is blanked and set to zero. Robust tech-
niques can be also implemented in the 
TD, both at the pre- and in-correlation 
level. This topic is discussed in more 
detail in the next section. Although TD 
techniques are usually computationally 
demanding, several high-end profes-
sional receivers implement FFT-based 
algorithms and are able to perform 
interference detection and mitigation 
in the frequency domain.

In hybrid approaches the complex-
ity of TD techniques is reduced using, 
for example, a bank of filters. The time 
domain signal is not transformed but 
split into several streams. Each stream 
is obtained using a separate filter which 
captures the content of the original sig-
nal on a specific frequency sub-band. 
This is a hybrid approach in the sense 
that each stream is a time domain repre-
sentation of the frequency content of the 
original signal on a specific sub-band. 
Here, we referred to “frequency”, but 

other representation domains such as 
scale can be adopted for the design of the 
filter bank used for the signal decompo-
sition. Approaches such as pulse blank-
ing and the usage of ZMNL functions 
can then be implemented on the indi-
vidual streams.

Finally, we would like to comment on 
spatial domain techniques, which can be 
used complementarily to the previously 
mentioned approaches. In this case, 
the time domain signal is not explicitly 
transformed but, instead, the signal is 
recorded using a multi-antenna receiver, 
which confers it with spatial discrimina-
tion capabilities. Conceptually, one can 
point to desired directions-of-arrival, 
while nulling the radiation pattern 
of the antenna at directions where an 
interference is detected. A detailed dis-
cussion is out of the scope of this article, 
but it suffices to say that pre- and post-
correlation techniques can be consid-
ered. Beamforming design can follow a 
plethora of options, being classified into 
temporal-, spatial-, or hybrid-reference 
beamforming techniques depending on 
the knowledge assumed for the desired 
and interfering signals. Typically, array 
processing techniques involve demand-
ing computational resources and precise 
hardware designs. 

Some general considerations on the 
properties of interference mitigation 
techniques are provided in Figure 3. In 
particular, the impact of model speci-

FIGURE 3  Impact of the model specification on the properties of a jam-
ming mitigation technique.
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fication is analyzed. Strong model specifications reduce, in 
general, the flexibility and robustness of estimation methods 
to cope with (non-nominal) interference situations. This is the 
case of adaptive notch filters which can only deal with frequen-
cy modulated signals with slowly varying central frequencies. 
On the other hand, precise model specifications can significant-
ly reduce the computational complexity of the technique and 
lead to optimal performance when the design conditions are 
met. For instance, notch filtering is computationally efficient 
and achieves performance comparable to that of TD techniques 
when dealing, for example, with CW interference.

TD techniques usually make only weak assumptions on the 
interference model. In particular, the underlying assumption 
is that the interfering signal admits a sparse representation in 
the TD. This corresponds to assuming that the interfering sig-
nals can be effectively described by a linear combination of few 
functions from a basis of the TD. For example, when the FFT/
DFT is adopted, it is implicitly assumed that the interfering 
signal can be effectively described as the linear combination 
of few complex sinusoids. In general, weak assumptions on the 
interference model lead to flexible techniques which can oper-
ate in a wide range of conditions.

As a general principle, the increase of computational 
load should yield to performance improvements. When this 
improvement does not occur or it is limited, the mitigation 
technique should be re-considered. This phenomenon may 
occur for example when considering new TDs: the computa-
tional load of the transform required to project the input signal 
in the new TD might not be justified by the improvement of 
performance, for example, with respect to other TD techniques 
which can be implemented using fast algorithms such as the 
FFT.

Robust TD Approaches
Finally, we consider a new class of TD approaches which is 
based on the usage of ZMNL functions in the TD. More spe-
cifically, we assume that a linear transform, such as the DFT 
and the DWT, has been applied to the input signal and that the 
following TD samples have been obtained:

Since linear transforms are used, the 
superposition principle applies and the 
different components in (12) have a cor-
responding term in (16). In particular, 
it is possible to identify the useful signal 
components, the interference term and the 
noise term. In this approach, we propose 
to model the received signal directly in the 
TD rather than in the time domain. In par-
ticular, we focus on different noise models 
for the aggregate TD noise term, 
As discussed in the section on robust esti-
mation, the model does not need to be 
accurate but should be selected in order to 

obtain robustness. In other words, in robust statistics, optimal-
ity is sacrificed in favor of robustness. In this case, we consid-
ered two non-Gaussian noise models: the complex Laplace and 
the complex Cauchy distributions for 

Following an approach similar to that developed for 
the time domain (see article by Borio, 2017, in Additional 
Resources), robust TD interference mitigation techniques can 
be obtained by processing the TD samples using a ZMNL 
function. Figure 4.a provides a schematic representation of 
TD approaches implemented at the pre-correlation level. The 
input samples are projected into the TD, processed and used 
to reconstruct a clean version of the time domain input signal, 

. In the approach proposed here, the processed samples, 
 are given by

where ρ(.) is the non-linearity defined by (14). In this case, f(y) 
has to be interpreted as the pdf of the aggregate noise in the 
TD. If a Laplacian model is adopted, the following non-linearity 
is obtained:

This implies that the TD components of the input signal are 
normalized by their amplitude and only the phase information 
is retained. Eq. (18) leads to a normalization of the different TD 
components: when frequency is considered, the spectrum of 
the output signal,  has a constant unit amplitude. In this 
respect, the ZMNL function defined by (18) acts as a Zero-Forc-
ing (ZF) equalizer. In common ZF equalizer implementations, 
however, several time samples are used to estimate the signal 
spectrum and determine the impulse response of the equalizer. 
In this case, a direct normalization is implemented in the TD. 
This, apparently simple processing, provides the receiver with 
remarkable interference mitigation capabilities.

Alternatively, if a Cauchy model is considered, the following 
processed signal is obtained:

FIGURE 4  a) Pre-correlation TD GNSS processing. b) In-correlation TD GNSS processing.
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where K is the linearity parameter intro-
duced in the robust estimation section 
when defining the sample myriad. This 
name is justified by the fact that K con-
trols the “linearity” of (19): as K goes to 
infinity, non-linearity (19) becomes the 
identity. K should be set as a function of 
the variance of the non-interfered input 
noise. The determination of K is out of 
the scope of this paper.

Figure 4.b shows the in-correlator 
implementation of the TD processing. 
In particular, due to the Plancherel the-
orem, it is possible to show that unitary 
transforms preserve the scalar product 
and correlation operations. Examples 
of unitary transforms are the DFT and 
DWT (when properly scaled). In these 
cases, it is possible to compute the cor-
relator directly in the TD. In some 

cases, this design choice allows signifi-
cant computational load reduction. A 
well-known approach is, for example, 
the parallel code acquisition algorithm 
based on the usage of the FFT. In the 
parallel code acquisition algorithm, the 
FFT is already used for the computa-
tion of the correlators: the usage of non-
linearities in the frequency domain can 
be efficiently adopted without requiring 
additional operations. 

A schematic representation of the 
parallel code acquisition algorithm is 
shown Figure 5. As already mentioned, 
the algorithm foresees the transposition 
in the frequency domain of the input sig-
nal, y[n], thus it can be easily modified 
by introducing an additional processing 
block. This block is the light green box 
labelled “Additional Processing” in Fig-
ure 5. This block simply implements the 
ZMNL functions in Eqs. (18) and (19). In 
this case, robustness can be introduced 
with limited additional computational 
requirements.

In order to demonstrate the effective-
ness of RTD approaches, we used the 
data available at <http://www.insidegnss.
com/special/download/201403-jamming.
rar> and previously used to evaluate the 
behavior of an adaptive notch filter. The 
data contain a short dataset with GNSS 
data affected by jamming. In the archive, 
basic code allowing the acquisition of the 
GNSS signals present in the dataset is also 
provided. Without interference mitiga-
tion, it is not possible to detect the useful 
signal and the CAF shown in Figure 6 is 
obtained. Secondary peaks caused by the 
jamming signal are clearly present. RTD 
has been implemented by modifying 
the parallel code acquisition algorithm 
as indicated in Figure 5. Parallel code 
acquisition is implemented in the “DftP
arallelCodePhaseAcquisition.m” Matlab 
function and it is included in the archive 
indicated above.

Significant robustness can be intro-
duced by adding a single line of code 
which implements normalization (18). 
We invite the readers to experiment with 
the code and add the following line of 
code
X = X ./ ( abs( X ) );

GNSS ANTI-JAMMING

FIGURE 5  Schematic representation of the parallel code frequency domain acquisition algo-
rithm. The FFT is used to compute all the CAF values in parallel, for a fixed Doppler frequency. 
The algorithm can be easily modified to introduce robustness.
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FIGURE 6  CAF obtained in the presence of jamming without mitigation.
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FIGURE 7  CAF obtained in the presence of jamming using the Laplace ZMNL function in the 
frequency domain.
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in the “DftParallelCodePhaseAcquisitio
n.m” script. This line should be inserted 
in the “for” loop, before the computation 
of the inverse IFFT. With this modifica-
tion, the impact of jamming is signifi-
cantly reduced and it is possible to effec-
tively acquire the useful GNSS signal. In 
particular, the CAF shown in Figure 7 is 
obtained: the signal peak clearly emerges 
from the noise floor and the secondary 
peaks due to the jamming signal are 
strongly attenuated.

The effectiveness of the proposed 
approach is further analyzed in Figure 
8 which shows the C/N0 estimated for 
a signal affected by jamming under dif-
ferent conditions. In this experiment, 
the jammer was connected to a variable 
attenuator. The attenuation was progres-
sively reduced leading to an increas-
ing jamming power. In particular, the 
received jamming power was increased 
with steps of 2 decibels. This fact is 
reflected by the C/N0 values shown in 
Figure 8. After 1,200 seconds, the atten-
uation reaches its minimum value before 
being increased again. TD processing 
was implemented using the architecture 
depicted in Figure 4a and non-linearity 
(18) was adopted. TD processing signifi-
cantly outperforms the notch filter used 
in Figure 8 for comparison. More spe-
cifically, a gain of more than 5 decibels 
is achieved for strong jamming signals. 
The considered notch filter implements 
interference detection and it is activat-

ed only when sig-
nificant jamming 
power is sensed.

Conclusions and 
the Future of (Anti-)
Jamming
Interference mitiga-
tion, in the context 
of GNSS receiver 
design, has been 
an active topic for 
research for several 
lustrums. It is likely 
to keep its good 
pace towards secur-
ing GNSS receivers 
— and the grow-

ing list of facilities and infrastructures 
depending on GNSS — from malicious 
jamming or unintentional interference. 
The field has indeed made substantial 
progress, mainly leveraging on advanced 
signal processing techniques. In this 
article we have covered classical time 
domain methods, but also discussed 
TD techniques that exploit sparsity of 
interference in other domains besides 
time. Additionally, the use of robust 
statistics was seen to provide interesting 
results and is a way forward for research. 
Anti-jamming is advancing, so are the 
capabilities of jammers to cause dam-
age to GNSS receivers. Besides spoofing 
— which is probably one of the most 
complicated interference signals to gen-
erate — and jamming — probably the 
simplest — there is a middle ground. 
For instance, deceptive jamming, where 
a simple pulsed-jamming signal is dis-
ciplined to target specific parts of the 
navigation message. It was shown (see 
Curran et alia, “On the Threat of Sys-
tematic Jamming of GNSS”, Additional 
Resources) that deceptive jamming is 
not only feasible, but hardly detectable. 
It is foreseen that this, and other threats, 
will spur research in the area of anti-
jamming.
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FIGURE 8  C/N0 estimated in the presence of jamming. The jamming 
power is progressively increased with steps of 2 dBs. After reaching 
its maximum, the jamming power is progressively decreased.
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