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Ubiquitous locat ion-aware 
mobile devices, mainly GPS-
enabled smartphones, have led 

to a boom in location-based services 
(LBS), which have been revolutionizing 
businesses and lifestyles. Common uses 
of LBSs include asset tracking, location-
based advertising, emergency roadside 
service, turn-by-turn navigation, and 
real-time traffic & road information 
sharing. 

A major category in LBSs is prox-
imity-based services, which allow users 
to search for friends or other points 
of interest around them. Examples of 
proximity-based mobile social network-
ing include Apple’s “Find My Friends,” 
Facebook’s “Nearby Friends,” Tencent’s 
“WeChat,” Momo, and Nearby. 

In Find My Friends, a user can see 
the locations of his friends and get noti-
fied when his friends are nearby. In 

WeChat, a user can find nearby users by 
the following two ways: 
•	 Shake — A user shakes the phone,

and the app will find other WeChat 
users who are also shaking at the 
moment locally and around the 
world. Then the user has an oppor-
tunity to message them and make 
new friends.

•	 Look Around — Look Around is
like Shake without the shaking. 
The app simply finds other WeChat 
users who have been recently in the 
user’s vicinity.
To use an LBS, a user usually has to 

send his exact location to the service 
provider, sporadically or frequently. The 
contextual information attached to user 
locations may, however, also reveal the 
users’ habits, interests, activities, health 
status, and political and religious affili-
ations. The high level of intrusion and 

With the proliferation of GPS-enabled mobile devices, location 
based services have gained in popularity. In particular, proximity-
based services are commonly used to help a user interact with 
other users nearby. However, these services endanger the 
privacy of users as the location information is provided to the 
service provider. This article proposes a novel private proximity 
detection scheme based on partial GPS measurement information. 
We develop an efficient algorithm for proximity detection and 
theoretically analyze the false alarm performance. Empirical 
results validate this scheme and evaluate its performance.
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privacy threats associated has made many users reluctant to 
opt into LBSs. So, designing practical and effective privacy-
preserving proximity-detection schemes would reassure users 
who have concerns about maintaining their privacy.

Past work on location privacy has explored quite a few 
approaches, such as anonymization, obfuscation, and add-
ing dummies. A common concept underlying most of these 
approaches is to “degrade information in a controlled way 
before releasing it,” as summarized in the paper by B. Hoh and 
M. Gruteser listed in the Additional Resources section near 
the end of this article. 

This article proposes a new approach to preserving loca-
tion privacy in proximity-based services. Our approach makes 
use of the location information inside a GPS receiver. The key 
difference from previous work is that rather than obtaining 
accurate location information and then degrading it, we extract 
privacy-preserving location information directly from an inter-
mediate step in GPS location estimation.

Our private proximity detection scheme presented in this 
article is designed for location-based “friending” applications 
in a global social network. A user shares his untagged range 
measurement, which is derived from the user’s GPS range 
measurements, with the server. The server can efficiently 
detect if any two users are within a threshold distance of each 
other. However, it is computationally intensive for the server 
to infer each user’s exact location from the untagged range 
measurement. Our approach can be used independently or 
together with other approaches, such as obfuscation, to pro-
vide a higher level of privacy protection.

This article describes how untagged range measurements 
preserve location privacy and a very efficient matching algo-
rithm for proximity detection. It also evaluates the proximity 
detection performance through a theoretical analysis and field 
experiments. The evaluation results demonstrate the efficacy 
and robustness of our scheme.

Previous Work in the Field
When a large number of people are using a “friending” app, a 
centralized server that detects proximity between each pair of 
users greatly reduces the communication costs. In this scenario, 
the goal would be to enable the server to perform proximity 
detection without leaking user locations to the server. The 
server should be able to infer as little information about user 
location as possible from the data it receives.

A possible approach is privacy-preserving test described 
in the article by A. Narayanan et alia, which is based on the 
location tag initially studied by the publications by D. Qiu et 
alia listed in Additional Resources. With proper location tags, 
location proximity can be reduced to measuring the similarity 
between two sets of tags. Narayanan et alia suggested deriving 
tags from surrounding environment including WiFi traffic and 
access point identifiers, GSM signals, and GPS signals.

The untagged range measurement proposed in this article 
is closely related to the location tag. A major difference is that 

the location tag still requires certain types of cryptography to 
work. The ElGamal encryption suggested by A. Narayan et alia
requires much more computational resources on the user end 
and server side than does our method proposed in this article.

Private Proximity Testing Using 
Untagged GPS Range Measurements
Traditionally, GPS range measurements are tagged with satel-
lite pseudo-random noise (PRN) codes, in order to identify the 
specific GPS satellites from which the ranges are measured. The 
novelty of our approach is based on untagged range measure-
ments, a vector of GPS range measurements without pseudo-
random noise (PRN) code designations. Suppose user i shares 
his untagged range measurements

where Ki is the number of satellites visible to this user. The 
range measurement made to the satellite k, ri

(k) does not include 
the receiver clock bias, for all k = 1, . . . , Ki, as the receiver clock 
bias can be easily calculated and removed beforehand. Further-
more, we require ri to be a sorted vector in ascending order, i.e., 

Location Privacy Protection. When the range measurements 
are not designated with PRN numbers, if the adversary has 
no knowledge of satellite orbits, the K range measurements 
can be seen as an ordered selection from the L satellites in 
the whole constellation. Therefore, the search space is K-per-
mutations of L.

Usually, we have L ≈ 30 and K ≈ 10, and thus the size of 
search space is L!/(L – K)! ≈ 1.1 x 1014. Even though a server may 
use the knowledge of satellite orbits to reduce the search space, 
a large number of permutations still remain to be searched. 
Intensive computation discourages an adversary from inferring 
a user’s actual location from untagged range measurements, 
especially in a large social network.

The untagged range measurements can also confuse an 
adversary. First, untagged range measurements seen at two or 
more distant locations may happen to be similar. These events 
are categorized as distant false alarms in a later section on 
“Proximity Detection Performance Analysis.” Second, a user 
can add dummy measurements to his sorted vector so that mul-
tiple locations exist at which the untagged range measurements 
will be a subset of the sorted vector. In this article, we assume 
no dummy measurements added to sorted vectors.

Furthermore, the untagged range measurements are 
ephemeral. The satellite-to-user range is decreasing when the 
satellite is approaching and is increasing when the satellite is 
leaving. The range change rate varies with satellite elevation. 
For satellites at the zenith, the range rate is close to zero. For 
low-elevation satellites, the range rate can be as high as ±930 
meters per second. Therefore, untagged range measurements 
are valid for 
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where t is the threshold distance, and  is the change rate of 
range k. If we choose t = 10 kilometers, then untagged range 
measurements are valid for approximately 10 seconds.

Proximity Detection. Consider two users at locations x1 and 
x2, as shown in Figure 1. Without loss of generality, assume user 
2 is to the north of user 1. Suppose a GPS satellite is visible to 
both users, and the elevation and azimuth of the GPS satellite 
seen by user 1 are α and β. When the two users are nearby, the 
distance between the two users is much shorter than the dis-
tance to the satellite. Thus, we have the approximation

Define a threshold distance t > 0. The two users are deemed 
“nearby” if . Therefore, a necessary condition 
for two users to be nearby is

In our scheme, the server has to do blind matching of range 
measurements because the users do not designate PRN num-
bers to range measurements in order to protect their privacy. 
We formulate this “blind matching” problem in an optimiza-
tion framework and propose an algorithm to solve it.

Blind Matching As an Optimization Problem. Let  denote the 
subset relation between two sorted vectors. We write x  y if 
each element in x also belongs to y. Let card(x) denote the car-
dinality, i.e., number of elements, of a vector (or a set) x. The 
proximity detection problem can be formulated as the follow-
ing optimization problem:

where the infinity norm 

The optimization problem maximizes c, the number of 
matched range measurements. The decision whether the two 
users are nearby depends on c, card(r1), and card(r2). In this 
article, we use a very simple criterion: two users are decided to 
be nearby if the match ratio

where the decision threshold ζ, 0 ≤ ζ ≤ 1, is selected to achieve 
certain detection error performance.

Efficient Blind Matching Algorithm. The optimization prob-
lem (6) is similar to the longest common subsequence (LCS) 
problem. Dynamic programming is often used to solve the 
LCS problem efficiently. Here we borrow this idea to solve the 
optimization problem.

Let r(k) denote the kth element in the sorted vector r, and 
let r[n] denote the vector of the first n elements, i.e., r[n] = [r(1), 
r(2), . . . , r(n)]T. Let c(r1[k1], r2[k2]) denote the maximum number 
of matched range measurements between r1[k1] and r2[k2]. We 
then have the following recursive property:

Using the foregoing property and the fact that both r1 and r2 
are already sorted, we have the following algorithm.
Require: two sorted vectors

Require: threshold distance t > 0
1:  
2:  
3:  while k1 ≤ card(r1) and k2 ≤ card(r2) do
4:     if  then
5:        
6:        
7:        
8:     else if   then
9:        
10:     else
11:        
12:  return c
This algorithm achieves the worst-case time complexity of 

O(card(r1) + card(r2)) and the space complexity of O(1). The 
algorithm only involves addition and comparison, two of the 
fastest operations on most CPUs. Therefore, our proximity 
detection algorithm is very efficient.

FIGURE 1  Two receivers make range measurements to the same satel-
lite. Eq. (4) shows how the distance between the two receivers is 
related to the difference between the two range measurements.
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Once we obtain c using the previously described algorithm, 
we then use Equation (7) to determine if the two users are in 
proximity.

Proximity Detection Performance Analysis
As a statistical hypothesis test, private proximity detection has 
a probability of making two types of errors: false alarm and 
missed detection. Suppose there are N users and let S denote the 
set of all pairs of users, card(S) = . Let X be the set of pairs 
of users who are within a threshold distance t. Let Y be the set 
of pairs of users who are detected to be close to each other. We 
define the following performance measures:
•	 Probability of false alarm (PFA)

where the set difference

•	 Probability of missed detection (PMD)

•	 Probability of detection error (PDE)

We focus our theoretical performance analysis on PFA for 
two reasons. First, PDE is dominated by PFA, as demonstrated 
by

where in general we have card(S \ X) >> card(X). Second, the 
inequality (5) always holds if two users are within the thresh-
old. Therefore, missed detection mainly results from users 
accidentally losing track of several satellites, which can hap-
pen indoors, in an urban canyon, or in other GPS-challenged 
environments. 

We should note the existence of two types of false alarm:
•	 Nearby false alarm: A pair of users are incorrectly detected 

to be nearby; their actual distance is greater than t, but still 
close to t, and they may see the same set of GPS satellites.

•	 Distant false alarm: A pair of users are incorrectly detected 
to be nearby; their actual distance is much greater than t, 
and they may see totally different sets of GPS satellites.
In this article, nearby false alarm is not our major concern 

because “proximity” itself is a fuzzy concept in social network-
ing. For example, if two users within a distance t are always 
deemed nearby, it is acceptable that two users within a larger 
distance (e.g., 1.5t) are detected to be nearby with a certain 
probability. The following analysis is about distant false alarm.

Probabilistic Model of Ranges. Suppose we randomly choose 
a location on the Earth. At a random epoch the range to an 
arbitrary GPS satellite observed at this location is a random 

variable r. Let  be its probability density 
function. 

Here we use a uniform distribution to approximate the 
actual distribution of ranges, i.e, r ~ U(rmin, rmax). When the 
satellite elevation mask angle is set to 10 degrees, rmin ≈ 20,189 
kilometers and rmax ≈ 24,619 kilometers. Let the spread of range 
measurements λ = rmax – rmin, and we have pdfr(x) = 1/λ.

A fundamental assumption of this analysis is that ranges to 
different satellites are independent and identically distributed 
(i.i.d.). The validity and efficacy of this assumption has been 
demonstrated in our previous work (L. Heng et alia).

In this analysis, we ignore GPS range measurement errors 
because such errors are much less than the threshold distance.

Probability of False Alarm. Suppose user 1 reports an 
untagged range vector  and user 2 reports 
an untagged range vector . Both users are 
randomly chosen on the Earth so that with a very high prob-
ability they are far apart. Let c denote the number of matched 
range measurements. According to our discussion in the sec-
tion on “Proximity Detection,” false alarm occurs when the 
match ratio m = c/ min{K1,K2} is grater than or equal to the 
threshold ζ.

Let us randomly shuffle r2. Based on our i.i.d. assumption 
mentioned earlier, for all k = 1, . . . , K2. The 
probability of r2

(1) matching one of the elements of r1 is given by

If  matches one of the elements of r1, then the probability 
of  matching one of the remainder elements of r1 has a simi-
lar upper bound 2t(K1 – 1)/λ. Similarly, the ith match happens 
with a probability less than or equal to 2t(K1 + 1 – i)/λ.

Let η = ζmin{K1, K2}  be the required number of matched 
range measurements, where ·  is the ceiling function. Finally, 
the probability of at least η matched range measurements has 
the following upper bound:

Since PFA ≤ 1, we finally have the following upper bound:
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The equation shows that increasing λ (equivalent to using 
a lower mask angle) and/or decreasing threshold distance t
will reduce the false alarm rate.

Experiment 1: Real Data from 
Global GPS Receiver Networks
We first validate our theory and algorithm using real GPS 
pseudorange measurements collected by the International 
GNSS Service (IGS) and the University NAVStar Consortium 
(UNAVCO). The two networks consist of more than 1,000 sta-
tions all over the world. Each station has one or multiple GPS 
receivers continuously generating GPS pseudorange measure-
ment data. We obtained range measurements by removing 
receiver clock biases from pseudoranges. The experiment pro-
vides a more realistic assessment because the receivers occa-
sionally lose GPS signals.

We treated the IGS and UNAVCO stations as nodes to test 
for proximity using the scheme outlined in the earlier section. 
These stations are usually very far (at least tens of kilometers) 
apart. With a proper distance threshold, the receivers at differ-
ent stations can be seen as distant users, while the receivers at 
the same stations are nearby users.

We applied our algorithm to the IGS data recorded on Janu-
ary 10, 2014. The pseudorange measurements released by 1,171 
stations around the world at the start of the day during one 
time epoch was used to aggregate the statistics for validation. 
Figure 2 shows the variation of probability of false alarm with 
the threshold distance. 

In Figure 3, we see that the missed detection rate is below 
0.05 for ζ ≤ 0.8. However, the false alarm rate is higher for lower 
values of ζ. This trade-off is succinctly depicted in Figure 4, 
which plots the probability of detection PD = 1 – PMD versus 
PFA, also known as the receiver operating characteristic (ROC) 
curve. Thus, the empirical results clearly illustrate the viability 
of our scheme for efficient private proximity detection.

The results with real data demonstrate the robustness of 
our scheme. Occasional loss of satellites cause missed detec-
tion. With a proper choice of decision threshold ζ, we can still 
achieve satisfactory detection performance.

Experiment 2: Real Data from Android Phones
With the evaluation using the IGS tracking network, the “user” 
locations were fixed. Further, most pairs of stations were very 
far apart and the locations of the stations in the tracking net-
work do not model the distribution of mobile phone users very 
well. Thus, we performed some local experiments to further 
validate the algorithm.

We developed an Android application to log GPS range data. 
Upon post-processing, we can evaluate the utility of our scheme. 
However, working with the Android API presents a fresh set 
of challenges. An additional evaluation using GPS receivers is 
presented to further strengthen the proof of concept.

In an ideal scenario, an implementation of a proxim-
ity-based service using an Android app would just have the 

FIGURE 2  Probability of false alarm PFA versus threshold distance t. A 
low false alarm rate (PFA ≤ 10–4) is achieved when ζ ≤ 0.7 for thresh-
old distance t ≤ 5,000 meters.
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FIGURE 3  Probability of missed detection PMD versus threshold distance 
t. A low missed detection rate (PMD ≤ 0.05) is achieved when ζ ≤ 0.8 
for all threshold distance.
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Android app interacting with a friend-
finder server as shown in Figure 5. How-
ever,  several challenges arose while 
working with the Android location 
application programming interface 
(API), which is the only mode of access-
ing the underlying GPS engine. We 
provide a description of the challenges 
and the suitable modifications required 
below.

Pseudorange Measurements Not Avail-
able from the API. An app developer can 
only access geodetic coordinates (lati-
tude, longitude, and height) informa-
tion of an user. Thus, we had to set up 
an external server to continually down-
load high rate ephemeris from nearby 
IGS stations. The high rate ephemeris 

within the last two hours from the sta-
tions NIST and GODS (shown in Figure 
6) were downloaded and hosted on a 
server.

The Android app downloaded and 
updated the ephemeris from the server 
periodically. Further, Android provides 
a GPSSatellite class which reports the 
satellites currently in view along with 
the elevation and azimuth. Using the 
last known location, the satellites in view 
and the downloaded ephemeris, we find 
the range measurements and form the 
anonymous range vector for proximity 
detection.

Unknown Clock Bias and Time Sync 
Issues. Another major issue is that the 
Android API does not report accurate 

GPS time. It only reports the coordi-
nated universal time (UTC) time at fix 
and the clock error can be as large as a 
few minutes. In order to circumvent this 
problem, the app was forced to compute 
the satellite positions and range mea-
surements at fixed time epochs.

Initially, we manually configured 
each of the devices used for testing to 
not have time lag more than 5–10 sec-
onds. However, the range measurements 
vary rapidly as the satellites are contin-
ually moving. In order to ensure time 
sync between users, the app was forced 
to report range measurements at fixed 
time epochs, i.e, integer multiples of 20 
seconds.

Fluctuating Satellite Set. As stated 
earlier, the GPSSatellite class reports the 
satellites currently in view along with 
the elevation and azimuth. However, 
the satellites in view were very fluctuant 
and the 4-5 satellites reported changed 
very rapidly (on the order of seconds). 
Thus, we aggregated the reports over 10 
seconds to find all the satellites in view.

Synchronous versus Asynchronous 
Implementation. In an asychronous 
implementation, the user notifies the 
LBS server when he/she is looking for 
friends nearby. The LBS server can then 
notify the user’s friends and obtain their 
untagged range measurements to test for 
proximity. In a synchronous implemen-
tation, the users report their untagged 
range measurements periodically at 
fixed time epochs.

The former implementation is obvi-
ously better in terms of privacy because 
the users give away less information. 
Also, there is the extra communication 
overhead of continuously reporting data 
in the synchronous implementation. 
However, we resort to a synchronous 
implementation in this work for sim-
plicity. Further, we do not implement 
a friend-finder server as we are simply 
recording data for research purposes. 
The Android app just logs all the pseu-
dorange data in a text file. Figure 7 shows 
the final implementation used for this 
experiment. 

We processed the files from all users 
after the recording to evaluate our algo-

FIGURE 5  Real world implementation of an Android proximity detec-
tion service
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users in this experiment were close to each other for the most 
period. Hence, we see a relatively higher ratio of false alarms as 
the denominator in equation (9) is considerable smaller. Figures 
9 and 10 show an interesting comparison of the number of 
mismatches between the anonymous range vectors of two users 
using two different threshold distance parameters t. We see that 
the results are consistent with what we expect.

FIGURE 8  Probability of correct decisions, false alarms, and missed de-
tections of the proximity detection algorithm with the data logged 
through Android phones.
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FIGURE 9  Variation of number of mismatches with distance for two us-
ers over a day with t = 250 m. The number of mismatches is higher 
when the distance between the users increases more than 250 
meters.
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rithms. The app was distributed to six graduate students who 
lived and worked in Urbana-Champaign, Illinois. They primar-
ily worked indoors and were close to each other for most part 
of the data collection. We present the results from this data 
collection in Figures 20, 21, and 22. 

Figure 8 shows the probability of correct decisions, false 
alarms, and missed detections. Unlike the IGS stations, most 
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Experiment 3: Real Data from GPS Receivers
In the previous section, we elaborated on the challenges and 
our approach to Android data collection. We had to construct 
our own range measurements from the satellite ephemeris and 
the last known position.

We thus decided to perform another experiment with small 
L1 single-frequency GPS receivers known to output pseudor-
ange measurements. Four graduate students from University 
of Illinois took part in this experiment. Two of them drove in 
opposite directions from the Urbana-Champaign campus for a 
few kilometers. Two others walked around on the campus. The 
paths of these users are presented in Figure 11.

Three accompanying figures present the variation of match 
ratio with distance for t = 750, 1,500, and 5,000 meters, respec-
tively, for a pair of users. From Figure 12, we can see that there 
is a sharp decrease in match ratio when the distance between 

the users increases more than the threshold 
of t = 750 meters. This demonstrates the 
robustness of the algorithm. For the same 
pair of users, as can be seen in Figure 13, a 
higher threshold of t = 1500 meters gives 
appropriate results in terms of match ratio. 
In Figure 14, the threshold t = 5,000 meters 
is always above the distance between the 
two users. As a result, the match ratio is 
close to 1.0 most of the time.

Conclusion
This article proposed a novel private prox-
imity detection method, which makes use 
of partial GPS measurement informa-
tion. We developed an efficient algorithm 
for proximity detection. We theoretically 
analyzed proximity detection performance 
and derived an upper bound on probability 
of false alarm.

We further conducted experiments 
using globally and locally collected data. The empirical results 
demonstrated the efficacy and robustness of our scheme for 
performing private proximity detection.
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FIGURE 12  Variation of match ratio with distance for t = 750 meters. 
The match2ratio is lower when the distance between the users 
increases more than 750 meters.
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FIGURE 11  Paths of the four users during data collection

FIGURE 10  Variation of number of mismatches with distance for two 
users over a day with t = 1,500 m. The number of mismatches is 
higher when the distance between the users increases more than 
1,500 meters.
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FIGURE 13  Variation of match ratio with distance for t = 1500 meters. 
The match ratio is lower when the distance between the users 
increases more than 1500 meters.
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FIGURE 14  Variation of match ratio with distance for t = 5000 meters. 
The match ratio is high most of the time because the distance 
between the users were always within 5000 meters.
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