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I n 2003 I published a paper called “The GPS EASY Suite — 
Matlab Code for the GPS Newcomer.” The paper consisted 
of 10 parts, which are cited in the accompanying sidebar, 
“EASY Suite I Topics.” Each installment included a printed 

text and a file of related Matlab code or scripts (an M-file) that 
could be downloaded from a designated web site. 

Each part contained an answer to often-asked questions 
in my classes. I did not, however, only offer an answer to the 
questions, but also a Matlab code that solves the problem. The 
article became a tremendous success and remained the most 
downloaded paper from the GPS Solutions site for more than 
a year.

Now, students love this sort of support. But I also received 
positive reactions from professionals who used the code in 
research papers, which saved them a lot of coding efforts.

The original Matlab code also turned out to be the most 
downloaded file from the Aalborg website. It resulted in numer-
ous e-mails from interested readers asking for more files. These 
requests now answered by the creation of eight additional M-
files. Some involve more complex problems and coding.

Since 2003, I have received a steady flow of additional ques-
tions from readers of Gilbert Strang’s and my book, Linear 
Algebra, Geodesy, and GPS. Last summer I decided to create 
another set of common GPS problems/solutions and accompa-

nying Matlab code — EASY Suite II. These will be presented in 
serial fashion, as one or more exercises in this and forthcoming 
issues of Inside GNSS. 

Introducing the New Suite
Easy Suite II augments the set of basic computational tasks with 
the following topics:

EASY11, stereographic sky plot of satellite orbits and plot of 
time when satellites are above a given local horizon

EASY12, details of the LAMBDA method, explained 
through a small numerical example

EASY13, receiver autonomous integrity monitoring 
(RAIM), horizontal protection level (HPL), and vertical pro-
tection level (VPL)

EASY14, sample of space-based augmentation system 
(SBAS) corrected positions and their presentation in Stanford 
plots

EASY15, accuracy comparison between pseudorange based 
stand-alone positions, baselines computed using pseudoranges 
alone, and pseudoranges and carrier phase observations

EASY16, error analysis of a selected one-way observation
EASY17, satellite orbits in inertial and Earth-centered, 

Earth-fixed (ECEF) systems, and curve defined by sub-satel-
lite points

GPS EASY Suite II
  A Matlab Companion

Many practitioners in the GNSS field are familiar with Matlab, a high-
level technical computing language and interactive environment for 
algorithm development, data visualization, data analysis, and numeric 
computation. In this new series, a prominent Danish GNSS researcher 
uses Matlab to illustrate and explain a variety of common GPS issues.

KAI BORRE
AALBORG UNIVERSITY

Im
ag

e 
of

 G
PS

 co
ns

te
lla

tio
n 

ba
se

d 
on

 p
ub

lic
 d

om
ai

n 
fil

e 
 

fr
om

 W
ik

im
ed

ia
 C

om
m

on
s



www.insidegnss.com   M A R C H / A P R I L  2 0 0 9  InsideGNSS 49

EASY18, computation of differential corrections at a base 
station.

The original suite was thought of as comprising the base for 
an elementary course in GPS while, as reflected in the subjects, 
the new suite is of a more optional, topical character.

In 2003 and later, many users encountered difficulty in 
finding the necessary files for running individual EASY-files. 
Therefore, I chose to copy all files needed into single directo-
ries accessible online, so that each directory becomes self-con-
tained. The price we pay is multiple copies of basic M-files.

The complete set of Easy Suite II Matlab codes can be found 
in compressed (“zipped”) files at <http://gps.aau.dk/~borre/
easy2>. Readers can find much of the theoretical background 
for the EASY scripts in Chapters 14 and 15 of Linear Algebra, 
Geodesy, and GPS (see Additional Resources for details). How-
ever, we have added some text that emphasizes certain issues 
that are central in the codes, but may be difficult to find in a 
textbook. 

EASY11: GPS Sky Plots
The EASY-Suite starts with a polar plot of satellite orbits (see 
Figure 1) as viewed from a given location, a graph showing the 
number of visible satellites, and the period of time when they 
are visible during 24 consecutive hours. 

EASY11 itself is based on an almanac downloaded most eas-
ily from the National Geodetic Survey (NGS) website <http://
www.ngs.noaa.gov/CORS/Data.html>. The actual file name is 
brdc1550.08n. 

The RINEX file has been reformatted into Matlab’s binary 
format for satellite ephemerides using the M-file rinexe. The user 
enters (φ,λ) for the position on the ground where the plot is to be 
used, and a value for the elevation mask to be set. Then the azi-
muth and elevation angles for all visible positions of the included 
satellites are computed and plotted as polar coordinates. 

Next follows bookkeeping on how many and which satel-
lites are visible during the day and the time periods when they 
can be seen. Figures 2 and 3 show the resulting plots.

The Matlab code is simple, the result is impressive, and use-
ful. In early GPS days when the constellation was incomplete, 
such plots were especially valuable for planning purposes to be 
sure that enough satellites would be available for positioning.  
Except in the most severe terrain and urban canyons, receivers 
can find plenty of GPS (and GLONASS) satellites around the 
clock, and this situation will become even more pronounced 
when Galileo satellites are launched.

EASY12: LAMDA Method
Most students find the theory behind the Least-squares AMBi-
guity Decorrelation Adjustment (LAMBDA) for ambiguity 
resolution difficult to understand. We shall try to smooth the 
path. 

First we describe in a subsection the linear algebra involved. 
Next we add an M-script that elucidates how the method works 
on a simple case with three ambiguities. 

Linear Algebra for LAMBDA 
Let the vector b contain the three components of the baseline 
and the vector a contain ambiguities for the L1 frequency and 
possibly for the L2 frequency. The double differenced observa-
tions are collected in the vector y:

The normal equations are

FIGURE 1  Sky plot including all GPS satellites for a period of 24 hours at a 
given position. The elevation mask is 10 degrees. 

EASY Suite I Topics
The original Easy Suite, which can be found online at <http://kom.aau.
dk/~borre/easy/>, dealt with the following issues:
•	 EASY1,	time	conversion
•	 EASY2,	computation	of	a	satellite’s	position	from	an	ephemeris
•	 EASY3	computation	of	a	receiver’s	position	from	pseudoranges
•	 EASY4	computation	of	a	baseline	from	pseudoranges	alone
•	 EASY5	computation	of	a	baseline	from	pseudoranges	and	

phase	observations	using	a	least-squares	solution
•	 EASY6	the	same,	but	now	using	a	Kalman	

filter for the baseline estimation
•	 EASY6e	the	same,	but	introducing	down-

weighting	of	older	observations
•	 EASY7	estimation	of	receiver	clock	offset
•	 EASY8	check	of	cycle	slips	and	receiver	clock	reset
•	 EASY9	various	coordinate	representations	of	a	given	baseline
•	 EASY10	estimation	of	ionospheric	delay	for	the	individual	satellites
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and the formal solution is

The components of the solution vector  are reals; however, 
we want a solution ă of integers! Hence, we find an integer vec-
tor a such that

After the integer solution ă is found we substitute it for â. Con-
sequently, the solution for  changes to . In order to determine 
, we multiply the lower block row in (3) by  and subtract 

from the upper block row:

The upper block row gives:

The right side is known and constant. If we change â to , then 
 changes to  and we have:

or

The right side is known and  is quickly found.

Minimizing a Quadratic Expression over 
Integer 
The LAMBDA method starts as other least-squares computa-
tions by solving the normal equations (3). The result is partly 
the vector of real-valued ambiguities â and partly the pertinent 
covariance matrix .

The core problem can be stated in a very clear form

In order to emphasize the integer nature of the problem we have 
swapped the notation from a to I.

This is the problem we study, and in one case this is espe-
cially simple. If  is diagonal, the best vector comes from 
rounding each component of  to the nearest integer. 

The components are uncoupled when   is diagonal. The 
quadratic is purely a sum of squares . The 
minimum comes by making each term as small as possible. So 
the best  is the integer nearest to .

In practice the individual  components are highly cor-
related. Recalling that we often deal with 20 ambiguities, we 
realize that a search procedure to find the minimum is unre-
alistic. Therefore, an idea about decorrelating the ambiguities 
as much as possible, before starting the search, should lead to 
an effective procedure. 

This is just what the LAMBDA method does. It was 
described by Peter Teunissen in 1993 and is, from a theoretical 
point of view, still considered to be the best method.

The first step consists in transforming  such that its off-
diagonal entries become numerically smaller. These entries 
measure the correlation.

We start by computing the LDLT decomposition of the given 
covariance matrix

Next we construct a matrix of integers Z from L by a 
sequence of integer Gauss transformations and permutations 
such that

is as “diagonal” as possible. Now the search defined by (4) is  
substituted by a search over integers I:

EASY SUITE II
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The choice of Z is based on integer elimination start-
ing with the first row of L. This will certainly involve 
row exchanges and, therefore, Z will not be triangular. 
The essential idea for this lattice basis reduction was 
given by A. K. Lenstra et alia in 1982 (See Additional 
Resources), and the algorithm is sometimes called L3. For 
further details see Strang and Borre, pages 495–499.

The result of the search is the integer vector . Finally,  is 
transformed back to the ambiguity space according to

Note that both Z and Z-1 must have integer entries. A con-
sequence of this is that det(Z) = 1 as seen from Cramer’s rule. 
The condition on the determinant of Z means that the Z trans-
formation preserves the search volume. At the end of this pro-
cess, we have transformed a highly correlated space (elongated 
ellipses) into a sphere-like search space, which diminishes the 
search time tremendously.

EASY12 illustrates the computational steps including a few 
numerical details. We choose a numerical example from P. J. de 
Jonge and C. C. J. M. Tiberius (1996). Further computational 
details are well described in that report.

A Numerical Example 
Given the float ambiguities

with covariance matrix

We introduce integer shifts of  in order to secure that -1 <   
≤1:

This leaves the remainders

Now we factorize  into LDLT with the lower triangular 
matrix

and the diagonal matrix

We then compute the initial size of the search ellipsoid as the 
squared distances of partially rounded float vectors to the float 
vector in the metric of the covariance matrix. In the present 
example the search volume is determined by χ2 = 1.245.

The call  computes the 
integer transformation matrix Z, a decorrelated covari-
ance matrix , and the transformed version of the LDLT 
decomposition. All quantities are mentioned below:

The transformed and shifted ambiguities are

The transformed, decorrelated covariance matrix is

Note the diminished off-diagonal terms! The lower triangular 
Lt used in the search is

and the diagonal matrix Dt used in the search is

Determining the size of the search volume for the trans-
formed Lt and Dt yields χ2 = 1.218. The search domain is defined 
as , for I integer. The final and fixed 
ambiguities are

Comparing this vector with  in (9), we notice that the final 
integer result could not be derived from the float values; this is 
due to the non-zero correlations between the individual ambi-
guities.

With this we end the simple numerical example demon-
strating the mechanism of the LAMBDA method.

In the next issue of this periodical, we will illustrate the con-
cept of receiver autonomous integrity monitoring (RAIM), and 
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EASY SUITE II

horizontal and vertical protection levels 
as applied especially in aviation.
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The usual formulation of position determination involves 
four unknowns: three physical dimensions (X,Y,Z) and 
the satellite-receiver time offset. In cases where we can 
observe five or more pseudoranges, one might well ask 

if the redundant pseudoranges could be used to check the con-
sistency among the observations —the fundamental principle 
behind receiver autonomous integrity monitoring (RAIM).

easy13 describes a technique for coping with this situation. 
In so doing, key concepts such as horizontal and vertical protec-
tion levels (HPL and VPL) are introduced. Necessarily, we also 
have to introduce some theory that motivates the procedures. 
(We will return to this topic with some further graphical illus-
trations in easy14.)

RAIM is a major technique for GNSS in many safety-criti-
cal applications. It has been with us since about 1990. Much of 
the material presented in the following relies on the work by 
B. Pervan cited in the Additional Resources section near the 
end of this article.

Let the 4 × 1 vector of unknowns be denoted x, the m × 1 
vector of observations be denoted b. A is an m × 4 matrix and 
the pertinent linear observation equation is:

The vector e contains residual errors in the observations and 
Σb is the given covariance matrix for the pseudoranges.

RAIM is activated for m ≥ 5. Presently there is no stan-
dardized RAIM method; so, we choose to present the simplest 
RAIM fault detection based on the residual norm ||e||.

We define the position error as

The estimated residuals ê equal the observations b minus 
the estimated observations

The residual vector ê is in the left nullspace of A. This means 
AT(b - A ) = 0, which are the normal equations. The compo-
nents of ê are dependent as they are computed according to (3). 
The corresponding covariance matrix is

Note that S is a projector and thus idempotent: S = SST, and 
that Σb is diagonal, while  is a full matrix! 

In order to identify the probability distribution of the 
residuals we need to transform the vector ê into independent 
components. This is done by an old trick, which implies mul-
tiplication to the left with . The factor W comes from the 
Cholesky decomposition of the covariance matrix

The transformed residual vector

has independent components. 

GPS EASY Suite II
  easy13—RAIM

In this installment of the series, the author uses Matlab to illustrate 
key principles in receiver autonomous integrity monitoring.

KAI BORRE
AALBORG UNIVERSITY
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Under normal conditions (small ||ê||) the weighted sum of 
squares is

The vector ê* is gaussian and independent and identically 
distributed with zero mean and variance 1:

Figure 1 graphically illustrates some basic RAIM states, 
which eventually (as illustrated in Figure 4) become four pos-
sible outcomes or “cases” experienced when using RAIM tech-
niques: normal (detected) error condition (NC), missed detec-
tion (MD), detection failure (DF), and false alarm (FA). 

A residual threshold can be set analytically using (6) to 
achieve any desired probability of false alarm under normal 
error conditions:

Given the values of m - 4 and P(FA | NC) we may solve 
(7) for the residual threshold R. The situation is depicted in 
Figure 2. The Matlab code (M-code) for plotting this figure is 
contained in the file “fap.m,” which can be found at the easy2 
webpage < http://kom.aau.dk/~borre/easy2/easy13>. 

In Figure 1 a horizontal line constraint is drawn to represent 
the protection level a. Note that, for small failure magnitudes, it 
is possible for the accuracy specification not to be breached. 

In the event that the position error δx exceeds a predefined 
protection level a, but ||ê|| < R — the residual threshold R deter-
mined from equation (7) — a missed detection has occurred, 
case II, see Figures 1 and 4. The corresponding probability is 
defined as

In general a condition between || || and ||δx|| will exist. We 
must quantify the degree of this correlation in order to demon-
strate the integrity monitoring capability of RAIM-based fault 
detection. The result is given later in equation (13).

According to equation (2) the residual  and the position 
error δx will scale proportionally, with the factor (AT A)-1AT. 
Hence, the normal condition (NC) confidence ellipse will slide 
up the failure mode axis with slope α.

In (2) the position error 

is defined in a 3-D Cartesian coordinate system (X,Y,Z). 
However, for practical use a local topocentric coordinate 
system δxENU = (e, n, u) is more appropriate. A position 
vector at (φ, λ, h) given in the (X,Y,Z) system can be trans-
formed into the east, north, up (e, n, u) system through 
multiplication by the orthogonal transformation matrix F:

In the following discussion we only consider the three coor-
dinates (X,Y,Z). So we delete the last column of A and get a new 
matrix A0 = A(:, 1:3). Similarly we delete the last element of δx 
and define δx0 = δx(1:3); hence:

Note that rows 1 and 2 of the 3 × m matrix M relate to east-
ing and northing. Finally we define M0 = M(1:2, 1:2).

Imagine now a failure of magnitude β in satellite i (β is 
placed as the ith component):

We compute the norm squared for this special choice of e:

FIGURE 1  Basic RAIM states

FIGURE 2  Probability of a false alarm
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The many zeros in e simplifies this to

From (3) we recall ê = Sb or

as STS = S. The diagonal entry (i,i) of S is called sii. Now

This is the equation for a straight line through the origin 
and with slope αi. The slope αi of the failure mode axis related 
to satellite i is computed as

The slope values are computed for all i = 1, …, m, and the 
corresponding lines are depicted in Figure 3. The PRNs in this 
figure are the ones included in easy2 (computation of a satel-
lite’s position from an ephemeris).

The likelihood that the RAIM algorithm may detect an 
observational error depends on the satellite geometry. A poor 
geometry does not necessarily indicate observational errors, 
but if errors are present they may be difficult to detect.

The slope αi provides a measure of the difficulty in accu-
rately detecting a fault in presence of noise: the larger the slope, 
the more difficult it is to detect the fault.

The failure mode axes in Figure 3 through the origin with 
slope αi are given exclusively from the geometry determined by 
the satellites and the receiver. The mode axis with maximum 
value of αi is called αmax and the HPL is defined as

where σ0 is the standard deviation of the pseudoranges
 
.

At <http://www.nstb.tc.faa.gov/Terms.html> readers may 
find the following definition of HPL: The Horizontal Protection 
Level is the radius of a circle in the horizontal plane with its 
center being at the true position which describes the region that 
is assured to contain the indicated horizontal position.

The resulting RAIM fault detection algorithm is a simple 
one: Check the residual statistic to see if it is larger than the 
threshold R. If so, a system failure is declared. Given this simple 
algorithm, four outcomes are possible, refer to Figures 1 and 
4. 

Under a normal condition (NC), the position error ||δx|| 
does not exceed the protection level a, and the residual is small-
er than the threshold R, as in case III. If the position error does 
not exceed the protection level a, but the residual is larger than 

the threshold R, a false alarm (FA) has occurred, which is case 
IV. When both protection level and residual threshold have 
been breached, a detection failure (DF) has occurred — case 
I. Finally, a missed detection (MD) happens when the position 
error ||δx|| is larger than the protection level a, but the residual 
is smaller than the threshold R; that is case II.

In the general case, of course, more than one failure mode 
exists, that is, e in (11) has more than one non-zero compo-
nent. However, this presentation does not deal with that case. 
In their book (see Additional Resources), R. G. Brown and P. Y. 
C. Hwang investigate RAIM in case of non-uniform weighted 
observations and multiple faults.

Because the horizontal protection level depends on satellite 
geometry, it must be computed for each epoch and each posi-
tion. If the HPL is below the protection level, RAIM is said to 
be available for that epoch.

Referring to Figure 4, we may introduce inequalities, which 
characterize each region in the figure. For notational reasons, 
in addition to the predefined protection level a, we introduce 
the obvious new variables x = ||ê|| (norm of residuals) and y = 
||δxEN|| (horizontal position error): 
 case I upper part a < y < x
  lower part a < x < y
 case II  y < a < x
 case III upper part  y < x < a
  lower part x < y < a
 case IV  x < a < y

A desired result will plot in the case III area, upper part, 
which is called normal operation. The foregoing description 
may be summarized into the following procedure for deter-
mining HPL:

EASY SUITE II

FIGURE 3  Characteristic slopes for seven visible satellites

FIGURE 4  RAIM status, repeated. We aim at having plots in the gray area.
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Input to RAIM: The variance  of a pseudorange observation, 
the coefficient matrix A of the linearized least-squares observa-
tion equations, and the maximum allowable probabilities for a 
false alarm P(FA) and a missed detection P(MD).

Output of the algorithm: Horizontal protection level (HPL), 
which is the radius of a circle, centered at the true position that 
is assured to contain the indicated horizontal position with the 
given probability of false alarm and missed detection.

Similarly for Vertical Protection Level (VPL). Again, an offi-
cial definition (at <http://www.nstb.tc.faa.gov/Terms.html>) is: 
The vertical protection level is half the length of a segment on 
the vertical axis with its center being at the true position, which 
describes the region that is assured to contain the indicated 
vertical position.

Additional Resources
The original Easy Suite can be found online at <http://kom.aau.dk/~borre/
easy/>. The complete set of Easy Suite II Matlab codes can be found in com-
pressed (“zipped”) files at <http://gps.aau.dk/~borre/easy2>. 
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S ome GPS applications generate long time series of 
position estimates. Most often, an easy way of getting 
a quick overview on the recorded data is to plot them. 
However, it may be difficult from a plot to quantify sta-

tistical measures such as mean value, standard deviation, and 
circular error probable (CEP).

easy14 continues the aviation-oriented discussion begun 
in the July/August 2009 issue of Inside GNSS, drawing on use 
of the European Geostationary Navigation Overlay Service 
(EGNOS), a satellite-based augmentation system (SBAS). The 
files for the corresponding MATLAB codes can be found on-
line; details included in the Additional Resources section near 
the end of this article.

Our demonstration sample uses data collected on August 
20, 2008, over a 4.2-hour period with a static GPS L1 receiver 
with 12 code and carrier channels and two optional SBAS 
channels, located  at a site south of Aalborg, Denmark. This 
receiver is a commercial one capable of handling EGNOS data. 
However, dedicated EGNOS receivers exist that exploit the data 
optimally and from which better-looking plots can be gener-
ated. 

The EGNOS-corrected positions were computed by using 
a MATLAB implementation done at the Danish GPS Center 
(DGC). For a given alert limit a, EGNOS provides an integrity 
measure that tells the user to use or not to use the position in 
question.

The EGNOS corrections can be obtained in several ways: 
directly via the geostationary satellites listed in Table 1, or from 
a service called Signal in Space through the Internet (SISNeT), 

or through other services. In the present case we apply a post-
processing mode which relies on the EGNOS Message Server 
(EMS) on-line at <ftp://131.176.49.48/pub/>

In polar regions users may have difficulties in receiving sig-
nals from the geostationary satellites and, hence, the Internet 
version becomes useful. However, the Internet is not available 
near the poles too often!

We shall make a small digression to investigate the mag-
nitude of the elevation angle h of a (geostationary) satellite 
as a function of the receiver site. Let a ground receiver have 
coordinates (φE, λE) and let the sub-satellite coordinates of any 
satellite be (φS,λS). The north pole, the receiver position E, and 
the sub-satellite point of S make a spherical triangle on a unit 
sphere with sides 90˚ - φE, 90˚ - φS, and the intersecting angle 
λE - λS. 

Applying the spherical cosine law on this triangle yields the 
following expression for the latitude φ reduced to the merid-
ian of E

Specializing to a geostationary satellite with φS = φG = 0 
gives

Our data are collected at (φE,λE) = (57 ,̊ 10 )̊; if we received 
the EGNOS corrections from the AOR-E (PRN 120) satellite, 
we would have

or a reduced latitude φ = 60.6 .̊

GPS EASY Suite II
  easy14—EGNOS-Aided Aviation

In this installment of the series, the author uses Matlab to illustrates 
aspects of aviation navigation using EGNOS signals to augment GPS.

KAI BORRE
AALBORG UNIVERSITY
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Next we assume that our site E and the geostationary satel-
lite G are in the same meridian plane. The Earth radius is aE  
= 6700 kilometers and the distance between the geostationary 
satellite and the Earth center is aG = 42486  kilometers. With 
reference to Figure 1 we get, in a spherical approximation, for 
triangle OPG

Some rewriting involving the sum relation yields

The elevation angle h equals zero for φ = 80.9 ;̊ for φ  = 60.6˚ 
we get h = 20.9 ,̊ (refer to Figure 2).

The EGNOS information allows us to correct the observed 
pseudoranges for atmospheric delays and other error sources. A 
fast EGNOS correction is computed from navigation messages 
2–5 that contain the so-called fast data set. The message starts 
with the 2-bit issue of data PRN (IODP), an 8-bit preamble, a 
6-bit message type identifier (values can be 2, 3, 4, or 5), and a 
2 bit issue of data fast (IODF). 

Next follows the fast data set for 13 satellites: 12 bits for the 
fast pseudorange correction PRC and 4 bits for the user differ-
ential range error indicator (UDREI). The message ends with 
24 parity bits, in total 250 bits. The fast data set for the next 13 
satellites is contained in the following message and so forth.

The PRC value is given in the interval [-256.000, +255.875] 
with a resolution of ⅛ meter. 

The range-rate correction RRC of the fast correction is com-
puted as the difference between the current PRC and the previ-
ous one divided by the time interval between the two values. 
The time of applicability tof is identical to the transmission time 
of the first bit in the message. 

The fast correction to the pseudorange for a given satellite 
identified by its pseudorandom noise code number (PRN) is

The RRC computation must time-out if there is no PRC for 
eight seconds.

The complete computation of the EGNOS correction 
involves calculation of an ionospheric correction and a possible 
tropospheric correction. The variance of the ith observation is 
composed of four variances: a fast and long term contribution 

, a tropospheric correction , an ionospheric correction 
, and finally receiver noise and multipath :

Typical values for a satellite with high elevation are σf lt = 
0.26 m, σtropo = 0.01 meter, σiono = 0.21 meter, and σair = 3.26 
meter, and for a low elevation satellite σflt = 0.55 meter, σtropo = 
0.10 meter, σiono = 0.91 meter, and σair = 3.28 meter.

Figure 3 shows the time series (deviations from mean val-
ues) for the three coordinates East, North, and Up (E, N, U) at 

the location E. Positions computed from the raw pseudoranges 
(black line) plot as noisy curves. 

Next we applied a MATLAB EGNOS correcting code, devel-
oped at DGC, to the raw observations; the result is the less noisy 
curves (red). No smoothing is applied. A further quantification 
of the graphs in Figure 3 are added as Table 2. Figure 4 contains 
a plot of the corresponding horizontal positions.

We have created a script easy141 that gives a recipe for com-
puting horizontal protection levels (HPLs) and vertical protec-
tion levels (VPLs) for aircraft approaches to airports. We start 
from the coefficient matrix A for a single epoch
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FIGURE 1  Elevation angle h to geostationary satellites as seen from the 
Earth’s surface as a function of latitude φ, spherical approximation

FIGURE 2  Plot of elevation angle h to geostationary satellites as seen from 
the Earth’s surface as a function of latitude φ

Satellite Name Longitude lG PRN

AOR-E 15.5º W 120

Artemis 21.5º E 124

IOR-W 25.0º E 126

TABLE 1.  EGNOS geostationary satellites
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The necessary details may be found in the script.
The larger script easy14 starts from a transformed version 

of A. The main change is to observe that  = cos eli  cos azi  

where eli means the elevation angle and azi the azimuth of PRN 
i as seen from the receiver position.

The first three columns contain the so-called Euler angles 
between the line-of-sight and the (X,Y,Z) axes. However, we 
need the corresponding angles between the line-of-sight and 
the topocentric (E,N,U) system. The three columns are trans-
formed from (X,Y,Z) to (E,N,U) by post-multiplication with FT. 
For further discussion of this point, see equation (9) in easy13.  

The product B = A(:, 1 : 3) FT, augmented with a column of 
ones, can also be computed directly as

The next steps are described by simple expressions but 
involve heavy computational burdens. A weight matrix W for 
the observed pseudoranges is defined in terms of the variances 

:

The 2 × 2 block matrix of the covariance matrix ∑ contain-
ing the entries ∑11 = , ∑22 = , and ∑12 = ∑21 = σ12 constitute 
the coefficients in a quadratic form

This quadratic form defines a confidence ellipse. The largest 
eigenvalue λ1 of this quadratic form is the semi-major axis of 
the confidence ellipse for the position solution

Equation (9.78) in the book by G. Strang and K. Borre, listed 
in Additional Resources, provides further context for the pre-
ceding step. 

The expression for λ1 can be rewritten as

This version is found in the minimum operational perfor-
mance standards (MOPS) for GPS/Wide Area Augmentation 
System (WAAS) airborne equipment published in RTCA/DO-
229C, page J.1.

The EGNOS standard defines two magnification factors 
KH = 6 and KV = 5.33. Remember that ∑33 =  and finally we 
obtain:
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CEP 50% 
[m]

CEP 95% 
[m]

sc  
[m]

 sn  
[m]

 meane 
[m]

meann 
[m]

Raw Pseudoranges 1.8 3.8 1.3 1.8 -0.2 -1.4

DGC EGNOS-corrected 0.5 1.1 0.4 0.5 0.0 -0.7

TABLE 2.  Circular errors probably (CEP), standard errors, and mean values of 
position for raw pseudoranges collected by a commercial receiver. Also shown 
are EGNOS corrections as computed by DGC MATLAB code. The numbers are 
derived from the 4.2-hour data series shown in Figure 3. The cut-off angle is 5° 
elevation.

FIGURE 3  4.2 hours of data collected by a static GPS/SBAS receiver. The 
figure shows east, north, and up as computed from raw pseudoranges 
(black) and from DGC EGNOS implemented correcting code (red)

FIGURE 4  4.2 hours of data collected by a Thales DG16 receiver. The figure 
shows horizontal positions in meters as computed from raw pseudor-
anges (black) and from DGC EGNOS implemented correcting code (red)
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Typical values are: HPL = 15 and VPL = 6. The EGNOS 
document also introduces its own non-precise HPL value, 
which is 1.03 times larger than the HPL used here. Everything 
is implemented in easy141.

Contemporary positioning theory uses the following four 
concepts that enter into almost every aviation specification 
accuracy, integrity, continuity, and availability.

The first concept, accuracy, fits our intuition well as it mea-
sures the difference between the (corrected) computed position 
and the true position. An SBAS implementation is obliged to 
quantify the accuracy of a wide-area differentially corrected 
position solution. Accuracy may be estimated by the difference 
between a receiver position and the true position which, for 
CEP 95%, is only exceeded 5 percent of the time in the absence 
of system failures.

Integrity risk is defined as the probability that the SBAS 
exceeds either the horizontal or vertical alert limits (HALs or 
VALs) and the system alert is silent beyond the time-to-alarm. 
EGNOS has been designed for a six-second time-to-alarm.

Continuity and availability are expressed in global terms. 
If a user experiences a system outage due to signal blockage, 
from a global perspective this is not a loss in continuity of the 
system — it is a local phenomenon.

Clearly, we need to distinguish between issues related to 
availability and continuity and what is availability of the system 
from a user’s perspective.

A sophisticated plot was developed at Stanford University in 
1998. The histogram of Figure 5 reports the horizontal system 
metrics provided by an EGNOS implementation done at DGC 
for at static user at Aalborg.

The EGNOS concept only involves an alert limit a. Know-
ing the value of a we can draw a half line from origin through 

(a,a) which partly limits the white area in which the attractive 
bins must lie!

The horizontal axis indicates the error  in the 
SBAS navigation solution with respect to the surveyed antenna 
location. The vertical axis indicates the protection level com-
puted for each and every position solution. 

Each bin tabulates the number of occurrences of a specific 
pair (x,y) = (error, protection level), and the color indicates the 
total number of epochs in which that pair occurs. Note that 
the color scale is logarithmic and the bins are quantized into 
0.25-meter squares.

In case the HPL is larger than the alarm limit a, we experi-
ence an integrity failure. The true error should always be less 
than the HPL. The long-term availability requirement of the 
SBAS is 99.9 percent and, hence, at least 999 out of 1,000 points 
should lie within the “Normal Operation” (USE) region. 

In the Figure 5 results, the system maintained 99.7 per-
cent availability in horizontal positioning and the system was 
unavailable in 49 epochs out of 15,129 that is 0.3 percent; note 
that (99.7 + 0.3) % = 100%.

Availability can only be associated with geostationary satel-
lites. For users employing the Internet to obtain the EGNOS 
information, everything changes. In the present study we use 
EMS and not the real-time service SISNeT.

Figure 6 (on page 72) shows the vertical system performance 
corresponding to the horizontal data presented previously. The 
SBAS correction in the vertical dimension has poorer perfor-
mance than the horizontal due to its weaker geometry; the alert 
limits are a = 12, 20 meters. The 12-meter level corresponds to 
Category I landing and the 20-meter level to instrument preci-
sion with vertical guidance (IPV). In this scenario, the position-
ing system met all three safety metrics (accuracy, integrity, and 
continuity) with an availability of 99.061 percent.

Acknowledgment
Kostas Dragūnas added several changes to the original M-
files vplstat and hplstat written by Todd Walter of Stanford 
University. The files are included in the Easy Suite II files 
(see Additional Resources) with the permission of Stanford 
University. Users also need the bound2 file in the download 
directory.
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fornia, USA.

Additional Resources
The original Easy Suite can be found online at <http://kom.aau.dk/~borre/
easy/>. The complete set of Easy Suite II Matlab codes can be found in com-
pressed (“zipped”) files at <http://gps.aau.dk/~borre/easy2>. 
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GPS EASY Suite II continued on page 72
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Corrections to easy13
In the EASY Suite II installment in the July/August 2009 issue of Inside GNSS, 
in Figures 1 and 4, the expression “protection level α” should have been “pro-
tection level a.”

In easy13.m the Matlab code is missing the F matrix (the transformation matrix 
from ECEF to ENU) in the  expression for M. Hence the alpha values and HPL 
are wrong. Consequently Figure 3 is valid for δxXY and not δxEN as stated on 
the vertical axis.

On page 49 of the article in the paragraph following equation (10), Mo = 
M(1:2,1:2) should be Mo = M(1:2,:).
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Approach.
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GPS observations, and since 2003 he published Matlab code together with 
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A frequently asked question about GPS is: How accurate 
is a GPS-based position? The experienced GPS user 
knows that a big difference lies between using pseu-
doranges alone or combining pseudoranges and carrier 

phases. 
The following analysis is partly based on an idea raised in 

the book, Global Positioning System: Signals, Measurements, 
and Performance, by P. Misra and Per Enge (See Additional 
Resources section at the end of this article).

In order to get a quantitative answer to the question Kos-
tas Dragūnas, a research assistant at the Danish GPS Center 
and now an Aalborg University Ph.D. student, recorded data 
simultaneously with a master and a rover receiver. In order to 
vary the receiver equipment, we used two dual-frequency L1/L2 
GPS receivers that were different from the models employed 
in previous EASY Suite field campaigns.  These receivers store 
data in a binary format called the GPS Receiver Interface Lan-
guage (GRIL). 

The following message was sent to the receivers before start-
ing the observation session:
 dm

em,,/msg/jps/GT,SI,R1,P1,R2,P2
Time of start was 481,860 seconds and the final epoch was at 

484,395 seconds; so, 2,535 synchronous epochs of observations 
were recorded with a one-second epoch interval. We deleted 95 

epochs because of missing data at either the rover or the master, 
or repeated estimation of ambiguities. This makes a continuous 
record of about 40 minutes.

The original observations were modified in several ways. 
After each ephemeris, the master receiver issued two subse-
quent P2 (full P/L2 carrier phases) messages (binary identi-
cal), Subsequently, the rover receiver sometimes issued two GPS 
Time (GT) messages — wn and tow (binary identical).

easy15 assumes data arriving in real-time from the two 
receivers. In reality. we read from two files, 19jan07m.log and 
19jan07r.log, containing a mixture of observations and eph-
emerides. The baseline is about 1,509.3 meters long.

The actual reading of the log-files is done by the readGrilM 
and readGrilR functions. We are using two similar codes for 
reading in each log-file in order to avoid too much “bookkeep-
ing” about where to read binary data in the files. A typical 
reading contains information on time of week, tracked satel-
lites (identified by pseudorandom noise codes or PRNs), and 
observed pseudorange and carrier phase on the two frequen-
cies. 

The reading is complicated by the fact that new ephemeri-
des may appear at any time in-between the observations. The 
ephemerides are stored in a global matrix, EPH. Any time a new 
version of an ephemeris arrives, it overwrites the old one.

As mentioned, we read from two stored files; therefore, we 

GPS EASY Suite II
easy15—Positioning Accuracy with 
Pseudorange & Carrier Phase

In this continuing series, the author describes and demonstrates 
the differences between position accuracy achieved using satellite-
receiver pseudoranges and differential pseudoranges compared 
to the accuracy of carrier phase–aided positioning.
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first have to determine the first epoch common to both receiv-
ers. Next, we determine the number of tracked PRNs at both 
master and rover sites for which we know the ephemerides. 

When the number of common PRNs is four or more, we 
compute the master position using the recposRTK function, and 
all elevation angles as seen from here. We delete low-elevation 
PRNs and select a reference PRN. Next all observations are 
rearranged so that master and rover data match each other 
— the sequence of PRNs in the master and rover receivers are 
likely to be different.  Ambiguities are estimated using Clyde 
Goad’s method as described in the text by G. Strang and K. 
Borre, page 490, cited in Additional Resources.

New PRNs most often rise at different epochs at the mas-
ter and rover. Hence, we need to omit the observations from 
one receiver until the PRN appears with complete data at both 
receivers.

We repeat the computation of the master position with good 
PRNs and find the ellipsoidal height hi needed for the later 
computation of tropospheric delay.

We choose a Kalman filter where the state vector x has three 
components, namely, the baseline components (x,y,z). We ini-
tialize the covariance matrices for the vector of observations 
∑e,k, for the system equations ∑ε,k, and for the state vector P0|0.

Note: users should realize that a Kalman filter and its inno-
vation vector may run smoothly and the baseline components 
may still be wrong. A correct ambiguity estimation leads to 
excellent estimates of the baseline components. Incorrect 
ambiguity estimates definitely lead to incorrect estimates of 
the baseline components while the filter works intensively on 
obtaining small innovations that try to push the baseline com-
ponents to the correct values.

Next we read one epoch of data in the master file and in the 
rover file, prepare the double differenced observations, correct 
for tropospheric delays, and then set up the innovation vector 
b - Ax. We update the filter, plot the result in an open figure 
window, and proceed to the next epoch.

This code is the closest we get to a real-time kinematic 
(RTK) code without having two receivers connected directly 
to the laptop computer’s com port. If the receivers/laptop con-
figuration can be achieved, then a user may set up the ports 
using the I/O facility. For one port the following code reads a 
data stream from the receiver into the file legacy.tex:

s = serial(‘COM2’);
s.OutputBufferSize = 512;
s.InputBuffersize = 50000;
fopen(s);
s.BaudRate = 9600;
set(s,’TimeOut’,1);
s.RecordMode = ‘index’;
s.RecordDetail = ‘verbose’;
s.RecordName = ‘legacy.tex’;

Figure 1 illustrates two levels of positioning accuracy 
obtained from GPS in real-time with position errors ranging 
from several meters to centimeters.  The norm of the position 

error is plotted for observations taken at one-second intervals 
over a period of about 42 minutes.

The raw L1 pseudorange position accuracy is typically a few 
meters. Access to concurrent pseudorange observations from 
a GPS master receiver (at a known location) does not reduce 
the errors significantly; possibly it eliminates some common 
trends in the positions.

Finally, the full potential of the observational data is 
exploited by including both pseudoranges and carrier phase 
observations to obtain position estimates at the centimeter-
level or better.

Figure 2 shows the variation over 42 minutes of master sta-
tion coordinates as computed from pseudoranges alone. Typi-
cally, the X and Y coordinates show a lesser variation than the 
Z coordinate (for Aalborg, Denmark).

FIGURE 1  A stand-alone position and a differential position based on 
pseudoranges alone have position errors of a few meters, while adding 
carrier phase observations brings the position error down to the centi-
meter-level or below.

FIGURE 2  Variation of master station coordinates during 42 minutes
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N ewcomers often have difficulties imagining what the 
satellite orbits actually look like. 

We say that the constellation consists of some 30 
satellites orbiting in six different planes, all making 

an angle with the Equator of 55 degrees and rotated 60 degrees 
compared to the previous plane. Figure 1 shows the situation as 

seen from far away in space, in what we call an inertial frame.
However, things get less clear if the viewer is on the surface 

of the rotating Earth. How do the trajectories then look? 
Very weird is how. 
The situation is depicted in Figure 2.
Here we use the so-called Earth Centered Earth Fixed 

(ECEF) coordinate system. The ECEF system is in a fixed rela-
tionship with the rotating Earth. That is, a given physical point 
on the surface maintains its coordinates over time, except for 
possible movements of the crust.

Finally, Figure 3 shows a curve made up of the sub-satellite 
points of an arbitrary part of an orbit. 

The curve is the intersection between the surface of the 
Earth and the line segment between the satellite and the ori-
gin. This sub-satellite curve runs within a symmetric belt on 
both sides of equator and is limited by northern and southern 
latitudes equal to the inclination angle of the orbit with the 
equator.

easy 18
Once I was teaching GPS to control engineers working with 
air traffic. A need came up for computing range and range rate 

GPS EASY Suite II
easy17—Visualizing Satellite Orbits
easy18—Computing Range and  
    Range Rate Corrections

In the final two installments in our series, the author describes what 
GPS orbits would look like from various perspectives and explains how 
to solve for range and range-rate corrections at a GPS base station.

KAI BORRE
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corrections at a base station. Here is the 
solution.

Let ρ denote the geometric distance 
between the satellite and the receiver 
antennas, dti denote the receiver clock 
offset, dtk the satellite clock offset, and 
T the tropospheric delay. Then the cor-
rected range is computed as

ρ* = ρ + cdti - cdtk + T

and the range correction as

d = ρ* - Pobs.

Figure 4 shows range and range rate 
corrections over 23 epochs using Sep-
tember 4, 2001, data.

The receiver clock offset pos(4,:) 
varies between 1.13 × 105 and 1.15 × 105 
through the 23-second period of obser-
vations.
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FIGURE 4  Range and range rate corrections as generated at a base station
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FIGURE 1  Satellite orbits as seen in inertial 
frame

FIGURE 2  Satellite orbits as seen in Earth Cen-
tered Earth Fixed frame

FIGURE 3  Sub-satellite points for a selected 
satellite
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W ith a given GPS receiver you get a certain position-
ing accuracy. So, the first question you may ask is: 
can I do anything to improve it? 

The answer most often is: yes, go and buy a bet-
ter receiver! Most ranging errors are determined by physics and 
you can do little to improve the situation.

However, it is interesting to analyze the information you 
may get from a single “one-way” range, that is, a single set of 
observables (P1, Φ1, P2, Φ2) related to an individual satellite seen 
by a single dual-frequency receiver. By so doing you also obtain 
an insight into the nature of the error sources — the ones that 
do matter and the ones that can be modeled or eliminated.

From the ephemeris of the tracked satellite we can com-
pute the elevation angle, the ionospheric delay is estimable 
because the data originate from a dual-frequency receiver, the 
tropospheric delay is computed from a standard model, and 
the remaining errors we call multipath errors. 

Finally, we estimate the orbital errors by comparing satellite 
positions computed from broadcast and precise ephemerides. 
The data sample illustrates these different error contributions 
very well, their variation over time, and, therefore, their depen-
dency on elevation angle.

We select a specific one-way observation set that was 
acquired at a station south of Aalborg on January 19, 2007. 
(This is from the data set already used in easy15, published in 
the January/February 2010 issue of Inside GNSS.) We investi-
gated PRN14 in the full session length, that is, about 42 min-

utes — including the 95 epochs that we omitted in the easy15 
discussion because of missing data at either the rover or the 
master, or repeated estimation of ambiguities.

The subplots in Figure 1 depict the satellite elevation angle, 
which varies from 18 to 33 degrees, and one-way errors in iono-
sphere, troposphere, and multipath. 

When dealing with the ionospheric delay I, we assume that 
we have both pseudorange and carrier phase observations on 
L1 and L2 at our disposal. We estimate the delay I according to 
the following matrix equation:

As usual we define  the constant α = (f1 / f2)
2 = I2 / I1. First we 

estimate the ambiguities on L1 and L2 — N1 and N2, respectively 
— as reals; incorrect values for N1 and N2 just change the level 
for I. Next we estimate I alone as

For the tropospheric delay we use the Goad-Goodman 
model. The delay T ranges from 7.4 m to 4.2 meters. If the sat-
ellite passed zenith, the corresponding delay would have been 
about 2.5 meters.

Multipath describes the situation where signals coming 
from the satellite propagate along several paths to the receiv-

GPS EASY Suite II
  easy16—Comparing GPS Precise  
  and Broadcast Ephemerides

In this installment of the series, the author demonstrates Matlab code for 
estimation of ionospheric delay, multipath, and ephemeris errors.

KAI BORRE
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er antenna. The main part of the 
signal radiates directly from the 
satellite, but part of the signal is 
ref lected from surfaces near the 
receiver. 

Multipath occurs when the 
signal arrives at the antenna from 
these ref lected surfaces in addi-
tion to the line-of-sight source. 
The reflected signal is phase-shifted 
with respect to the original trans-
mission and appears as additive 
noise at the antenna.

Multipath depends on satellite 
geometry and the antenna environ-
ment, which makes multipath diffi-
cult to model. For long observation 
periods — 24 hours or more — the 
multipath effects are partly reduced 
by averaging. However, observation 
periods usually last for only a few 
hours and often much less; this is 
why multipath is a problem.

Because the antenna locations 
are different, the multipath signa-

FIGURE 1  One-way errors for PRN14
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ture at each antenna is unique and the error is not common 
mode.

Let the geometrical distance between satellite and receiver 
be ρ, let I be the ionospheric delay, and M the code multipath 
including receiver noise. The pseudoranges observed on L1 and 
L2 for PRN14 may then be expressed as

Remaining errors are identified as multipath and receiver 
noise — similarly for the phase observations:

The multipaths m1 and m2 on phase observations are so 
small that we subsequently put mi = 0. We want to find an 
expression for M1. We start by subtracting (5) from (3):

or

and subtracting (6) from (5) yields

or

We insert (9) into (7) and obtain

or

We can reasonably assume that E{M1}= 0. The second term 
on the left side of (11) is a constant; so, it is possible to reduce   
M1 to  such that E{ ] = 0:

Analogously, by exchanging subscripts, we have for the 
multipath on L2:

For all epochs with all four observations P1, P2, Φ1, and Φ2 
available, we compute multipath according to Equation (12). 
In the present case, the average error is below two meters and 
noisier at low satellite elevation angles. The noisy character of the 
plot reflects the actual noise in any pseudorange observation.

EASY SUITE II

Finally we investigate the difference between precise and 
broadcast ephemerides. Any file containing broadcast eph-
emerides is specific to the site from which the satellites were 
tracked. Therefore, we need to identify the tracked satellites in 
the time period during which we want to compare the precise 
and broadcast ephemerides. 

This can be done by inspecting the corresponding observa-
tion file in the PRN14 navigation message and getting the date 
and the seconds of the week; next we find the corresponding 
Julian Day Number (jd). We find an epoch (modulo 15 minutes) 
60 minutes ahead of jd, which is counted in unit of day. (The 
variable jd is a real number where the integer part is number of 
whole days and the decimal part is made up of hours, minutes, 
seconds and fractions of seconds all convert into fractions of a 
day). Finally the GPS week number is computed by the Matlab 
function gps_time.

The precise ephemerides that we used can be found at 
<igscb.jpl.nasa.gov/igscb/product/1410>, the number 1410 being 
the GPS week number. The file extracts to igr14105.sp3, which 
contains precise ephemerides for January 19, 2007, in the SP3 
format. The IGS SP3 files typically contain satellite positions 
(X,Y,Z) and clock offsets for each satellite every 15 minutes, 
from 0:00 hours to 23:45. (The SP3 file starts with some header 
lines, which for our purposes we can skip.)

We read precise orbits for the interpolation period plus three 
times 15 minutes ahead of the observation period and three 
times 15 minutes after the period, i.e., 13:15 hours, 13:30 hours, 
... , 15:15 hours — in total nine sets. The precise coordinates for 
all tracked satellites are stored in the matrix Xp.

In the following discussion, we introduce a time scale with 
units of 15 minutes. We could have chosen whole minutes 
instead. The first observation is from 13.85 hours, and the last 
observation is taken at 14.55 hours. The entire observation peri-
od is 2,535 seconds = 42.25 minutes = 2.8 quarters of an hour.

A Lagrange interpolation, one for each coordinate, of at least 
seventh order is used to compute the actual position. The Mat-
lab function intp does an (n – 1)th order polynomial Lagrange 

FIGURE 2  Difference in meters between precise and broadcast eph-
emerides for PRN14 for individual vector components (X, Y, Z). Norm of 
difference vector marked by stars
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interpolation. Let y be an n × 1vector of data given at the dis-
crete times x, (x is as well an n × 1vector), (See the relevant 
discussion in Matrix Analysis by R. A. Horn and C. R. Johnson, 
Volume 1, pages 29–30, cited in Additional Resources at the 
end of this article.)

We want an interpolated precise position each minute; 
hence, we divide by 15 to keep units in quarters of an hour. 
The first parameter in the intp procedure describes the abscis-
sae for the points at which we know the satellite coordinates. 
The second parameter contains these coordinates, and the third 
parameter describes the point set at which we want interpolated 
values — all in units of quarter of an hour. Each coordinate is 
interpolated separately!

Figure 2 shows the difference in satellite position as com-
puted from broadcast ephemerides given via the navigation 
file, and the postprocessed satellite positions for PRN14. When 
comparing with broadcast ephemerides we assume the precise 
positions to be the true ones.

The actual influence of the orbit error on the receiver posi-
tion is given by the projection of the difference vector onto the 
line between the receiver and satellite. Let vector b be the dif-
ference vector between the satellite positions computed from 
the broadcast and the precise ephemerides, and a to be the vec-
tor between the receiver and the satellite position as computed 
from broadcast ephemerides. Then the projected difference 
vector p onto vector a is given as

Figure 3 shows vector p for PRN14. The computed ephemeris 
error varies in the range of ±2 meters. The discontinuities in 
the error reflect the routine ephemeris updates at two-hour 
intervals.

Additional Resources
Horn, R. A., and C. R. Johnson, Matrix Analysis. Cambridge University Press, 
Cambridge, 1985

FIGURE 3  Length of difference vector between precise and broadcast 
ephemerides as projected onto the line of sight
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