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Real-time position accuracy, achievable in dense urban 
areas using low-cost equipment, is currently limited to 
tens of meters. If this could be improved to five meters 

or better, a host of potential applications would benefit. These 
include situation awareness of emergency, security and military 
personnel and vehicles; emergency caller location, mobile map-
ping, tracking vulnerable people and valuable assets, intelligent 
mobility, location-based services and charging, augmented 
reality; and enforcement of curfews, restraining orders and 
other court orders. 

A further accuracy improvement to around two meters 
would enable navigation for the visually impaired, lane-level 
road positioning for intelligent transportation systems, aerial 
surveillance for law enforcement, emergency management, 
building management, newsgathering, and advanced rail sig-
naling.

This article explores how 3D mapping can be used to 
achieve a “step change” in real-time GNSS performance in 
dense population centers, including urban canyons.

The Problem
Buildings and other structures block many GNSS signals in 
urban environments. When obstructions block satellite sig-

From their beginning, GNSS technologies were known 
to have limitations in certain operating environments, 
including anywhere that the low-power satellite 
signals could be blocked or dispersed. This has given 
rise to a variety of integrated solutions designed 
to extend and improve the performance of GNSS 
under adverse conditions. Among these solutions 
in recent years is the use of three-dimensional 
maps to support several new techniques, including 
“shadow-matching,” which seek to turn the disruptive 
effects of buildings in urban areas into a method 
for actually enhancing position determination. 
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nals that cross the street at right angles, allowing only along-
street signals to reach a receiver, signal geometry and position-
ing accuracy decline. In extreme cases, where the ratio of the 
building heights to the street width is very high, the number 
of directly received signals may be insufficient to compute a 
position solution.

Another well-known signal propagation effect occurs when 
buildings, walls, vehicles, and the ground reflect GNSS signals. 
Metal, metallized glass, and wet surfaces are particularly strong 
reflectors. Where the direct line-of-sight (LOS) signal is blocked 
and only a reflected, or non-line-of-sight (NLOS), signal is 
received, a ranging error occurs that is equal to the additional 
path taken by the NLOS signal. 

Strong NLOS signals can be difficult to distinguish from 
direct LOS signals, particularly using a smartphone, which 
has a linearly polarized antenna. Reflected signals can interfere 
with reception of the direct LOS signals, a phenomenon known 
as multipath interference or more simply, multipath, because the 
signal is received via multiple paths. Figure 1 illustrates both 
phenomena. 

GNSS user equipment can minimize ranging errors due to 
multipath interference by exploiting receiver signal processing 
technology at the expense of increased power consumption and 

hardware cost. However, this approach does not mitigate NLOS 
reception errors at all.

Multi-constellation receivers have significantly improved 
the availability of GNSS positioning in dense urban areas. 
However, accuracy remains a problem. In hostile signal prop-
agation environments such as dense urban areas, the stand-
alone, single-epoch positioning accuracy of GNSS is degraded 
to an average of about 25 meters. In the worst cases, position 
errors can exceed 100 meters.

Filtered or carrier-smoothed positioning algorithms can 
perform better, but these require an accurate position solution 
for initialization. They then need a sufficient number of good-
quality GNSS signals to maintain solution accuracy and, hence, 
the ability to reject poor measurements using innovation filter-
ing. In practice, this can be difficult to achieve in challenging 
urban environments.

Outdoor Wi-Fi positioning is accurate to around 25 meters, 
while other radio positioning techniques either offer poorer 
accuracy or require expensive dedicated infrastructure. Dead-
reckoning techniques, including wheel-rotation sensing and 
pedestrian dead-reckoning using step detection, require accu-
rate initialization, and their position accuracy then decreases 
as distance measurement errors accumulate.
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If we are to achieve low-cost, real-
time accuracy of five meters or better 
in challenging urban environments, a 
whole new approach is needed. Current-
ly, 3D mapping–aided GNSS presents a 
great opportunity.

The Opportunity
To implement 3D mapping–aided GNSS, 
we need three things: measurements, 
mapping, and algorithms. In dense 
urban areas, the more satellites that are 
available for use, the better. Therefore, 
the return of GLONASS to full opera-
tional capability in 2011, followed by the 
wide availability of GLONASS-capable 
receivers presented a step-change in sig-
nal availability. In 2016, with the Galileo 
satellite deployment well under way and 
the extension of BeiDou from a regional 
to a global system, we are in the midst of 
a second step-change. 

To implement advanced positioning 
algorithms, we need access to the “raw” 
measurement data, namely, the pseudo-
range and signal-to-noise ratio (SNR) 
or carrier-power-to-noise-density ratio 

(C/N0). Pseudorange rate (Doppler) and 
carrier phase can also be useful. Sur-
vey receivers have always provided this 
information, but obtaining these data 
from consumer receivers has histori-
cally been problematic. Today, however, 
some low-cost GNSS receivers generate 
pseudorange and SNR measurements 
from all GNSS constellations, providing 
access to this data through the applica-
tion programming interface (API) on 
smartphones and tablets running the 
Android Nougat operating system that 
have a compatible GNSS chipset. 

The second ingredient, 3D mapping, 
can prove expensive when it comes to 
highly detailed 3D city models. How-
ever, simple block models, known as 
level-of-detail (LOD) 1, are sufficient for 
most 3D mapping–aided GNSS imple-
mentations. (Figure 2 shows an exam-
ple.). The free, editable OpenStreetMap 
provides building maps for major cities 
worldwide, much of it three-dimen-
sional (This can be viewed online using, 
for example, the F4 Map demo, noting 
that a default height is assumed for 2D 

buildings.) 
Data is avai l-

able from national 
mapping agencies 
with various terms 
a nd cond it ions , 
and private com-
mercial companies 
such as Google and 
Apple a lso hold 
large amounts of 
3D mapping data. 
Although such digi-
tal map coverage is 
far from universal, 
it tends to be avail-
able in dense urban 
areas where it is 

most needed. Conventional stand-alone 
GNSS positioning works well enough in 
low-density areas.

The final ingredient is advanced 
positioning algorithms that take advan-
tage of 3D mapping. Many algorithms 
have been developed. Some use pseudo-
ranges while others use SNR measure-
ments with varying trade-offs between 
performance and processing load. Over 
the past five years, results have been 
published from more than 10 different 
research groups spread across Europe, 
North America, Japan, and the Middle 
East.

What Can Be Done?
3D mapping can be used to provide 
three types of information for aiding 
GNSS positioning. The first, and sim-
plest, is the terrain height. Next are the 
predictions of which satellites will be 
directly visible at a given position and 
time, i.e., which lines of sight are blocked 
by buildings and which are not. 

Finally, 3D mapping can be used to 
predict signal reflections, including the 
path delay of the reflected signal with 
respect to the direct signal and, poten-
tially, its relative amplitude. However, 
amplitude is difficult to predict because 
3D mapping data doesn’t include infor-
mation on building reflectivity at GNSS 
frequencies, which can be quite different 
from optical reflectivity.

Terrain height-aiding is useful 
because, by constraining the posi-
tion solution to a surface, it effectively 
removes a dimension from the posi-
tioning problem. In open areas, terrain 
height-aiding only improves the vertical 
position solution (as one might expect). 
However, in dense urban areas where the 
signal geometry is poor, it can improve 
the horizontal accuracy by almost a fac-
tor of two.

We can use satellite visibility predic-
tions to aid both conventional ranging-
based GNSS positioning and a new class 
of SNR-based positioning algorithms 
known as shadow matching. Each GNSS 
signal is predicted to be directly visible 
in some areas and blocked (shadowed) 
in other areas. 

3-D MAPPING-AIDED GNSS

FIGURE 1  Multipath interference and NLOS reception

FIGURE 2  LOD 1 3D model of City of London.  (Data from Ordnance 
Survey Mastermap, Crown Copyright and database rights 2016. 
Ordnance Survey (Digimap Licence)
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Shadow matching assumes that the user is in one of the 
directly visible areas if the received SNR is high and in one 
of the shadowed areas if the SNR is low or the signal is not 
received at all. Figure 3 illustrates the general principle. Repeat-
ing this calculation for each GNSS signal enables one to reduce 
the area within which the user may be found.

In practice, the SNR distributions of direct LOS and 
NLOS signals can overlap, particularly when using a smart-
phone antenna. Furthermore, real urban environments and 
signal propagation behavior are more complex than can be 
represented using 3D mapping. Therefore, a practical shadow-
matching algorithm works by scoring a grid of candidate posi-
tions according to the degree of correspondence between the 
satellite visibility predictions and the SNR measurements. This 
enables inaccuracies in the process to be treated as noise so that 
a correct position is still obtained provided there is sufficient 
“signal.” 

Due to the building geometry, shadow matching is normally 
more accurate in the cross-street direction than the along-street 
direction, which complements ranging-based GNSS position-
ing in dense urban areas. Shadow matching enables users to 
determine which side of the street they are on in environments 
where other positioning technologies do not.

Satellite visibility predictions can be used to aid ranging-
based positioning in a number of different ways. Where the 
position is already known to within a few meters, we can pre-
dict which signals are NLOS with reasonable accuracy and sim-
ply exclude them from the position solution (assuming there 
are sufficient direct LOS signals). Otherwise, which signals are 
directly visible depends on the actual position of the user. A 
simple approach is to determine the proportion of candidate 
positions at which each signal is predicted to be directly vis-
ible. This information is used to weight each measurement 
within the position solution and to aid consistency checking. 
This approach typically improves the positioning accuracy by 
20–25 percent and can handle initialization errors of about 100 
meters.

To make the best use of satellite visibility prediction, a con-
ventional least-squares (or extended Kalman filter) position-
ing algorithm should be replaced by an algorithm that scores 
candidate position hypotheses, according to the difference 

FIGURE 3  Principle of shadow matching

FIGURE 4  Across-street and along-street positioning errors 
across 18 sites in central London using conventional and 3D 
mapping–aided GNSS

between the measured and predicted pseudoranges (assum-
ing LOS propagation). Different assumptions about the error 
distribution can then be made at various candidate positions 
— according to which signals are predicted to be LOS or NLOS 
at each position. Thus a symmetric error distribution can be 
assumed for LOS signals and an asymmetric distribution for 
NLOS signals, with the scoring adjusted accordingly.

The candidate positions may be distributed in a regular grid 
or semi-randomly (as in a particle filter). Terrain height-aiding 
is used to associate a height with each horizontal coordinate, 
enabling the search space to be limited to two dimensions. 
University College London (UCL) has combined this hypoth-
esis-scoring ranging algorithm with shadow matching, which 
has reduced the root mean square (RMS) horizontal position-
ing error in dense urban areas from 26 meters to 3.9 meters 
using data from a consumer-grade GNSS receiver — a sixfold 
improvement. Figure 4 shows the across-street and along-
street positioning errors obtained at 18 sites in central London, 
depicted in Figure 5.

3D mapping can also be used to predict reflected signals. 
For shadow matching, this potentially provides more informa-
tion from which to predict the SNR measurements. For rang-
ing, this can be used to predict which direct LOS signals are 
subject to multipath interference, enabling us to adjust their 
weighting or assumed error distribution within the position-
ing algorithm.

Where the path delay of the reflected signals is predicted, 
NLOS reception errors may be corrected, enabling NLOS sig-
nals to contribute to an accurate position solution. However, 
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accurate correction of NLOS errors requires an accurate posi-
tion solution, a “chicken and egg” problem. If we already know 
the position to within a few meters, alternate computation of 
the position solution and NLOS corrections may be iterated 
until they converge. For larger uncertainties, we will need 
multiple starting positions to ensure convergence. Another 
approach, known as the “urban trench” method, incorporates 
the reflecting surfaces within the positioning algorithm. How-
ever, this only works where we can determine which surface 
reflects which signals.

A more powerful approach adds NLOS error prediction to 
positioning by scoring candidate position hypotheses. NLOS 
corrections are computed for each candidate position. Both 
grid-based and particle-based methods have demonstrated 
positioning accuracies within two meters. However, they are 
computationally intensive. 

These different approaches should not be treated as compet-
itors. SNR-based and pseudorange-based algorithms 
are clearly complementary. Better performance can 
be achieved by using both and combining the results. 
Similarly, a computationally efficient algorithm, oper-
ating over a wide search area, can be used to initialize 
a higher-resolution, computationally intensive algo-
rithm operating over a smaller area.

How Practical Is It?
For 3D mapping–aided GNSS to be practical, the pro-
cessing load and data storage or transmission load 
must match the intended applications. The algorithms 
for determining position will run relatively efficiently 
on a PC, tablet, or smartphone. However, the algo-

rithms for predicting GNSS signal propagation using 3D map-
ping are much more computationally intensive. Performing 
ray-tracing of the of a signal’s path for 20 satellite positions 
and 1,000 user positions can take several minutes of central 
processing unit (CPU) time. 

This problem has two solutions. The first is pre-computa-
tion. For predicting satellite visibility at street level, 3D building 
boundaries — representing the surfaces and edges of a struc-
ture — can be computed for a one-meter grid of candidate posi-
tions. Each building boundary comprises the elevation thresh-
old below which satellite signals are blocked for each azimuth. 
Satellite visibility can therefore be predicted very quickly simply 
by comparing the satellite elevation with the building bound-
ary elevation at the appropriate azimuth. The main drawback 
to this approach is that the building boundary data can take 
up more space than the original 3D mapping. 

The building boundary approach can also potentially be 
extended to predicting whether or not a reflection is received. 
The path delays of reflected signals could be pre-computed, 
but this would create a very large amount of data; so, it may 
not be practical.

The second approach is to use a graphics processing unit 
(GPU). A GPU is designed for parallel processing, which 
enables us to consider multiple candidate user positions simul-
taneously. Using projection, the visibility of 20 satellites over 
a 100 × 100-meter position grid may be computed in about a 
second. 

To compute the path delays of reflected signals, ray tracing 
can be run on a GPU, enabling computation of paths from 20 
satellites to 100 candidate positions within a second. Operat-
ing the GPU on a mobile device increases power consumption 
because GPUs typically consume about twice the power of 
CPUs. However, the power consumption of the GNSS receiver 
chip is also significant. Because of their operating design, GPUs 
may also speed up the generation of building boundary data.

Distribution of 3D mapping data is another important fac-
tor to consider. Three options for distributing these data include 
pre-loading, streaming, and server-based positioning, as shown 
in Figure 6. In all cases, a binary data format should be used to 
minimize the capacity required. 

FIGURE 5  Locations of test sites in central London (background image 
from Google Earth)

FIGURE 6  Pre-loading, streaming and server-based system architectures
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The terrain height data are easiest to 
handle. A five-meter grid spacing is suf-
ficient, corresponding to 40,000 points-
per- square kilometer. Twelve bits is 
sufficient to describe the relative height 
of a point within a tile. Four bytes are 
needed for the height of each tile’s origin 
with respect to the datum. Thus, about 
60 kilobytes are needed to represent a 
square kilometer of mapped urban ter-
rain; so, one gigabyte of storage could 
accommodate map data representing 
about 17,000 square kilometers, Even 
more can be stored using data compres-
sion.

For 3D modeling of a city’s build-
ings, about 500 bytes might be used 
to describe a building to LOD 1, and a 
square kilometer in a dense urban area 
might typically contain about 1,000 
buildings. Thus, about 100 kilobytes 
per square kilometer is needed; so, one 
gigabyte of storage could accom-
modate about 2,000 square kilo-
meters of data, or enough to cre-
ate 3D maps for about two cities 
— again, more with compression. 

Building boundaries require 
a lot more data. To achieve a one 
degree precision, requires about 
300 bytes per building bound-
ary. Assuming that about half the 
space in a city is outdoors (build-
ing boundaries are not required 
for indoor locations), a 100 × 
100–meter tile would require 
1.5 megabytes of data without 
compression. So, one gigabyte of stor-
age would only accommodate about 7 
square kilometers of data, perhaps 70 
square kilometers with compression. 
Thus, pre-loading may be practical if 
the 3D mapping is used directly, but is 
unlikely to be if building boundaries are 
used. Pre-loading of pre-computed path 
delays would not be practical.

Moving on to streaming, if 3D map-
ping is used directly, buildings within a 
~300-meter radius of the predicted user 
position should be downloaded as they 
could potentially affect signal reception. 
This download would require about 150 
kilobytes of data. For building bound-
ary data, only the search area is needed, 

which should be no larger than 100 
meters by 100 meters, considering only 
outdoor locations. 

Only azimuths corresponding to the 
current set of GNSS satellites are need-
ed, which reduces the amount of data 
required to 90 kilobytes without com-
pression. The pre-computed path delays 
would comprise one value per satellite, 
per candidate location, requiring about 
125 kilobytes for 10-bit values. Third-
generation (3G) mobile download speeds 
are more than 500 kB/s (4 Mbit/s). 
Therefore, streaming of mapping data is 
practical, and substantial data buffering 
could be accommodated to bridge any 
gaps in communications coverage.

The final option is to calculate the 
position solution on a remote server. 
This requires uploading of the GNSS 
pseudorange and SNR measurements 
from the mobile device to the server, 

and then downloading the position 
solution. This imposes a minimal com-
munications load and could employ cur-
rent assisted-GNSS (AGNSS) protocols; 
so, it would be compatible with all cur-
rent mobile devices. However, it needs 
continuous communications coverage. 
A server would almost certainly use pre-
computed building boundaries and pos-
sibly pre-computed path delays as well, 
depending on the size of the user base.

UCL’s combined shadow-matching 
and GNSS-ranging system, which is 
accurate to about four meters, uses pre-
dictions of terrain height and satellite 
visibility based on the 3D mapping, but 
not path delay predictions. Consequent-

ly, it can operate in real-time with pre-
computed building boundary data, or 
potentially GPU-based projection from a 
3D building model. Thus, 3D-mapping-
aided GNSS positioning is a practical 
proposition. 

Other research groups have dem-
onstrated higher accuracy (around two 
meters) using methods that predict 
NLOS path delay using 3D mapping. 
These are too computationally inten-
sive to operate in real-time over a large 
search area on a mobile device. However, 
they could be used as the final step in 
a multi-stage positioning process, fol-
lowing on from the UCL algorithms. 
With further research, further viable 
approaches are likely to emerge.

The Way Forward
The GNSS research community has 
demonstrated that 3D mapping–aided 

GNSS can vastly improve posi-
tioning accuracy in dense urban 
areas and is practical to imple-
ment. Current algorithms could 
be deployed in consumer loca-
tion-based services right now. 
This could operate as an enhance-
ment to server-side AGNSS using 
current interfaces and protocols. 
A service provider would have to 
invest in additional hardware to 
run the positioning algorithms 
for multiple users simultaneously 
and store the 3D mapping. 

3D mapping–aided GNSS 
algorithms could also run on a mobile 
device, potentially within an app, pro-
vided the device has a compatible API 
and GNSS receiver chip. In this case, a 
service provider would be required to 
store the 3D mapping data and down-
load it to users on demand. Clearly, 
either architecture needs a viable busi-
ness model to fund it. One possible 
driver is enhancing a mobile navigation 
app’s user experience to attract more 
customers.

Many specialist applications — such 
as navigation for the visually impaired, 
situation awareness of emergency, secu-
rity and military personnel and vehicles; 
emergency caller location; and tracking 

The GNSS research community has 

demonstrated that 3D mapping–aided 

GNSS can vastly improve positioning 

accuracy in dense urban areas and is 

practical to implement.
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vulnerable people and valuable assets — 
could also make use of current 3D map-
ping–aided GNSS algorithms. With a 
much smaller user base than consumer 
applications, much less server infra-
structure would be required to get them 
operational.

 The scientific community is another 
potential early adopter of 3D mapping–
aided GNSS. Many research groups use 
GNSS for tracking experimental subjects 
or for building maps of things they wish 
to study, such as pollution or wheelchair 
accessibility. 

As these users post-process their 
data, they are much easier to support. 
All they need is some positioning soft-
ware that they can download plus a set 
of instructions. They can acquire GNSS 
receivers, which can log pseudoranges 
and SNR data, or use smartphones that 
can access these through the API. They 
can also use existing OpenStreetMap 
3D mapping to select test sites where the 
data are available. 

A lot more can be done to increase 
the performance of 3D mapping–aided 
GNSS. This is still a new field and fur-
ther research will improve the accuracy, 
reliability, and processing efficiency of 
these techniques. An integrity frame-
work could also be developed. Therefore, 
3D mapping–aided GNSS — poten-
tially integrated with other navigation 
technologies — could meet the needs 
of more demanding applications, such 
as lane-level road positioning and aerial 
surveillance, as well as better serving 
consumer, specialist, and scientific users.

3D mapping–aided GNSS could 
potentially revolutionize positioning 
in dense urban areas. It’s time to start 
implementing it.

Manufacturers
The commercial GNSS receiver used in 
the UCL experiments was the EVK M8T, 
from u-blox, Thalwil, Switzerland.
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