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Urban localization using GNSS 
is notoriously imprecise due to 
blockage of satellite signals by 
tall structures. However, this very 
phenomenon of blockage can be 
exploited  to derive valuable (but 
very noisy) location information by 
“shadow matching” against 3D maps 
of the environment.  This article 
describes a real-time, low-cost, 
cloud-based Bayesian localization 
and tracking solution that combines 
shadow information and raw GNSS 
position estimates with probabilistic 
motion models to substantially 
improve urban localization. The 
Bayesian framework  also extends 
to enable synthesis of 3D maps 
from crowdsourced GNSS data.
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of researchers have realized that we can 
turn shadowing in urban environments 
from a bug into a feature, by using infor-
mation already available in the GNSS 
receiver regarding the signal-to-noise 
ratio (SNR) that corresponds to each 
satellite it sees. If the LOS path from the 
receiver to a satellite is blocked (i.e., the 
receiver is in the shadow of a structure), 
then this SNR is likely to be small. Con-
versely, if the LOS path is available, the 
SNR is likely to be high. 

If we interpret these SNR measure-
ments with the aid of a 3D map of the 
environment, then we can significantly 
reduce localization uncertainty by per-
forming shadow matching, as shown in 
Figure 1. In its simplest form, the concept 
of shadow matching is summarized as 
follows: 

Shadow Matching with 3D Maps
1. Compute shadows of nearby obsta-

cles using satellite ephemeris data 
and 3D maps

2. Classify each satellite as visible (LOS) 
or blocked (NLOS) based on mea-
sured SNR

3. Match the location of the GNSS 
device to areas inside/outside of the 
various shadows 

Any GNSS-capable Android smart-
phone or tablet can provide, via the loca-
tion application programming interface 
(API), its estimated position with uncer-
tainty, as well as the satellite coordinates 
and SNRs. Thus, shadow matching can 
be performed entirely in software with-
out requiring any changes in GNSS 
receiver hardware or firmware. 

The article by Wang et alia listed 
in the Additional Resources section 
near the end of this article provides an 
introduction to the basic idea of shad-
ow matching. Wang and his coauthors 
reported promising results in mitigating 
GNSS cross-street errors using relatively 
straightforward techniques. 

While shadow matching clearly 
provides information that is useful for 
urban localization, naive application 
of this idea using deterministic algo-
rithms has significant limitations. First, 
the concepts of “high SNR when not 
blocked” and “low SNR when blocked” 
are inherently probabilistic, because 
SNRs exhibit large fluctuations due to 
multipath fading. Second, the range of 
SNRs seen by a device depends on the 
hardware implementation and physical 
realization of the GNSS receiver. Third, 
the potentially large errors in the raw 
location estimates output by the GNSS 
receiver are not captured by the typical 

It is by now well known that GNSS-
based localization in built-up urban 
environments can be extremely 

inaccurate. This is a fundamental prob-
lem that hardware enhancements cannot 
solve. 

A GNSS receiver estimates 3D loca-
tion and timing from pseudoranges 
from four or more satellites, assuming 
that these pseudoranges correspond to 
direct line-of-sight (LOS) paths from 
each satellite. In urban canyons, how-
ever, the signal from a satellite to the 
receiver suffers from multipath propa-
gation and shadowing. 

Even if the LOS path is available, the 
pseudorange estimate may be corrupted 
due to the presence of alternative paths. 
Furthermore, the LOS is frequently 
blocked except for satellites at the high-
est elevations; so, the satellite is either 
unavailable, or the strongest path seen 
by the receiver is a reflection off a build-
ing, leading to a pseudorange often sig-
nificantly larger than that for the LOS 
path. These errors in pseudoranges lead 
to large errors in localization (e.g., up 
to 50 meters in high-rise environments 
such as New York City). 

Attempts to enhance GNSS localiza-
tion using signals from other sources, 
such as cellular and WiFi, have had 
limited success: it is difficult to use geo-
metric techniques to infer location in a 
complex propagation environment, and 
received signal strength measurements 
are subject to significant fluctuations due 
to multipath fading and shadowing. 

Shadow Matching
Over the past few years, several groups 

FIGURE 1  A simplified illustration of Shadow 
Matching.
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computations of uncertainty regions 
based on dilution of precision (DOP), 
because these implicitly assume that 
paths to all satellites are LoS. Hence, 
it is unclear how large an area to per-
form shadow matching over and how 
to fuse shadow matching information 
with GNSS location estimates. Finally, 
shadow matching is based on having 
access to accurate 3D maps, which are 
not readily available in many settings.

In the work described here, we 
address the preceding challenges 
through an adaptive Bayesian frame-
work for inference, localization, and 
tracking with two complementary ingre-
dients:
•  Real-time Localization: Where accu-

rate 3D maps are available, we devel-
op nonlinear filters for localization 
based on the following ingredi-
ents: (a) probabilistic, rather than 
deterministic, modeling of shadow 
matching; (b) on-the-fly adaptation 
to device characteristics; (c) proba-
bilistic fusion of information from 
shadow matching and GNSS loca-
tion estimates; (d) mobility modeling 
using state space techniques. Because 
of significant modeling uncertainties 
and computational constraints, our 
solution needs to go well beyond 
classical particle filters. 

•  3D SLAM: When accurate 3D maps 
are not available, the same Bayesian 
framework, with additional com-
putation, is used for generating and 
refining 3D maps using simultaneous 
localization and mapping (SLAM) 
based on crowdsourced GNSS 
data. Intuitively, twe can do this by 
assigning likelihoods of blockage to 

many crisscrossing receiver-satellite 
rays based on measured SNRs and 
then stitching these rays together, 
accounting for the uncertainty in the 
receivers’ locations, into 3D maps. 
The framework can exploit “warm 
start” (e.g., based on public building 
data), if available. 
Increased accuracy in urban local-

ization clearly has many compelling 
applications, including car services, 
delivery services, navigation and guid-
ance for vehicles (including for emerg-
ing automated and semi-automated 
operation), tourism, and hyperlocalized 
advertising. 

We do not discuss any application in 
detail but instead focus on core technical 
aspects of our proposed solution in the 
remainder of this article. In particular, 
we describe the key concepts behind 
these algorithms in more detail, discuss 
cloud-based implementations with light-
weight application layer modifications to 
mobile devices, and provide experimen-
tal results demonstrating the scalability 
and efficacy of these techniques.

Initial results based on these ideas, 
and the underlying technical details, 
were described in a series of publications 
last year. (See the articles by A. T. Irish et 
alia and J. T. Isaacs et alia in Additional 
Resources.) The experimental results 
reported here are based on significant 
enhancements to those techniques.

Real-Time Localization  
and Tracking
In Bayesian estimation, we compute the 
conditional distribution of a quantity 
of interest given a set of measurements. 
This is termed a posterior distribution, 

because we can only compute it after we 
see the measurements. In particular, we 
are interested in estimating the posterior 
distribution for the location of the GNSS 
receiver, based on measurements con-
sisting of the GNSS position fixes and 
the satellite SNRs. In order to do this, we 
must model the conditional distribution 
of these measurements, conditioned on 
the actual location. 

We consider a discrete time model, 
typically with samples spaced by one 
second. The true 3D location at time t
is denoted by xt, and the corresponding 
GNSS location fix is denoted by yt. The 
satellite SNR measurements are denoted 
by zt,n, where zt,n is the SNR to satellite n 
at time t.

Modeling GNSS Location Fixes. The 
measurement model for the GNSS loca-
tion fix is, in principle, straightforward:

yt = xt + et ,

where the covariance of the error et can 
be estimated using standard DOP-style 
computations.  However, these standard 
computations assume that the paths seen 
by the GNSS receiver are LOS, whereas 
many of the dominant paths in urban 
environments are actually strong reflec-
tions, with the LOS path blocked.  Thus, 
in order to obtain satisfactory localiza-
tion performance, we need to modify the 
model for {et}, resulting in a non-Gauss-
ian statistical model.

Modeling Satellite SNR Measurements.
We represent the 3D map m using an 
occupancy grid: space is divided into 
binary-valued “voxels” or “cells,” with 
mi = 1 if the ith cell is occupied, and mi
= 0 if the ith cell is unoccupied. If the ray 
from a hypothesized location to a satel-
lite crosses only unoccupied cells, it is 
classified as LOS. If a ray passes through 
at least one occupied cell), it is classified 
as NLOS (or shadowed). 

Figure 2 illustrates this approach. On 
the left, we illustrate ray tracing: blue/
red lines represent LOS/NLOS signal 
paths to satellites, light/dark grid cells 
approximate empty/occupied space. On 
the right, we show typical SNR distribu-
tions that have been found to yield good 
performance: Rician for LOS, and log-

USING GNSS SHADOWS

FIGURE 2  Modeling SNR measurements. (a) LOS/NLOS geometry (b) LOS/NLOS distributions
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normal (with smaller mean and higher 
spread) for NLOS. 

Note that we have made a drastic 
simplification in our model for NLOS 
rays, in that the distribution does not 
depend on the number of occupied vox-
els the ray crosses. Although it might be 
possible to improve performance using 
a more detailed model, our simplifica-
tion leads to a significant reduction in 
computational complexity, while yield-
ing excellent localization performance. 
Additional improvements can be 
obtained by introducing dependence of 
the LOS/NLOS SNR distributions on 
satellite elevation. 

Tracking framework. We use a stan-
dard linear state space model for pedes-
trian motion, with the state consisting of 
position and velocity. However, because 
the measurement model is nonlinear 
and non-Gaussian, a standard Kalman 
filter cannot be used. Simple extensions 
such as the extended Kalman filter also 
do not work, as the posterior distribu-
tion of the state is often multimodal. 

We therefore use a particle filter. 
Roughly speaking, it operates as fol-
lows: At each time t, the posterior dis-
tribution of the state is approximated 
by a discrete probability mass function 
putting weights at a set of hypothesized 
state values, or particles. These parti-
cles are propagated probabilistically to 
obtain a new set of particles and weights 
at time t + 1, based on the dynamics of 
the motion model, and the new set of 
measurements. 

The particle filter has by now become 
a standard tool, but we have needed to 
make a number of modifications in 
order to account for modeling uncer-
tainties. 

Figure 3 shows example pedestrian 
results for Bush Street in downtown San 
Francisco. Figure 3(a) shows the mean 
trails and 68 percent confidence circles 
for the GPS reported fix (red) and the 
particle-filtered estimate (blue), with the 
ground truth path in yellow. Note that 
GPS makes cross-street errors which are 
corrected by our algorithm. 

Figure 3(b) shows the SNR likelihood 
surface at the beginning of the trail: GPS 

starts out with a cross-street error, which 
our algorithm is able to correct because 
the SNR likelihood has a strong peak on 

the correct side of the street. The large 
greyish-green ellipse is the 3σ uncertain-
ty estimated by GPS around its (incor-

FIGURE 3  Example pedestrian results in San Francisco (Bush Street). (a) Mean trails and 68% 
circles  (b) SNR likelihood surface and  error ellipses  (c) Rays and composite (GPS x SNR) likeli-
hood surface
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rect) estimate, while the smaller black 
ellipse is the 3σ uncertainty estimated 
around the location estimate provided 
by the particle filter. 

Finally, Figure 3(c) shows the com-
posite SNR/GPS likelihood surface, 
which exhibits a peak at the correct loca-
tion. We also show the satellite rays col-
ored likely LOS (green) to likely NLOS 
(red) according to our SNR model; from 
the image, we can see that these do cor-
respond to unblocked and blocked rays, 
respectively. 

Vehicular applications require more 
sophisticated motion models, and 
knowledge of the road network can 
also be exploited.  However, the essen-
tial ingredients, in terms of the mea-
surement model and the particle filter, 
are the same. Figure 4 shows example 
vehicular results with the 68 percent 
probability tunnels for both the GPS 
reported estimate (red) and our filtered 
estimate (blue), along with a road cen-
terline clamping of the filtered estimate 
(green). 

SLAM for CrowdSourced 
3D Maps
For 3D mapping, we are interested in 
using the noisy GNSS position measure-
ments y and the SNR measurements z, to 
estimate the 3D map m. In particular, we 
wish to estimate the probability of each 
map cell being occupied or not, given all 
the measurements. That is, we wish to 
compute the marginal posterior distribu-
tions, p(mi | y,z) for each cell i. However, 
because the GPS fixes are noisy, we do 
not know the paths x followed by the 
devices. Thus, in order to estimate the 
map, we must also estimate quantities of 
the form , where  is the posi-
tion of a particular device j at time t. In 
the robotics community, this is referred 
to as the SLAM problem.

Our approach for Bayesian estima-
tion of the map is to use a factor graph
representation of the measurements 
and the quantities to be inferred, 
which allows us to employ loopy belief 
propagation to approximately compute 
the map marginal posteriors.  While a 
detailed exposition of factor graphs is 
beyond the scope of this article, we pro-
vide intuition into their applicability in 
our context.

Figure 5 illustrates the construc-
tion of the factor graph based on mea-
surements corresponding to a single 
GNSS receiver over two consecutive 
time periods. The variables that we 
wish to perform inference on, denot-
ed by circles, are the binary-valued 
map cell occupancies {mi} (which is 
our primary interest in shadow-based 
SLAM) and the true locations {xt} as a 
function of time t (which are, for the 
mapping task, nuisance variables to be 
averaged out).

The factors represent the statistical 
information about the variables pro-
vided by the measurements. In Figure 
5, the factor gt represents p(yt | xt ), the 
likelihood function corresponding to 
the GPS fix at time t, and the factor ft,n
represents p(zt,n | m,xt), the likelihood 
function corresponding to the SNR to 
the nth satellite at time t.

Belief propagation can now be imple-
mented by the standard sum-product 

FIGURE 4  Example vehicular results in San Francisco

FIGURE 5  Graphical model for Shadow SLAM.  (a) Measurement scenario (b) Factor graph
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algorithm described in the article by F. 
Kschischang et alia, passing messages 
back and forth between nodes. A mes-
sage is simply a function whose domain 
is the set of values taken by the variable. 
Thus, for a binary-valued map cell mi, a 
message is a binary vector. 

For a position variable xt, we simply 
quantize its possible set of values to a 
discrete set (e.g., with K possible values), 
and a message is then a K-dimensional 
vector corresponding to the values of the 
function evaluated at these K points. A 
message along an edge from a variable 
node to a factor node is simply a prod-
uct of messages coming along all of the 
other edges.

A message from a factor node f to a 
variable node v is more complicated: it 
involves products of messages coming 

into that factor node, but also involves 
summing over (marginalizing out) 
all variables other than v. We refer the 
reader to the article by A. T. Irish et alia
(2014a) for details, but it is worth men-
tioning that our simplified SNR model 
(in which the NLOS model for SNR is 
independent of the number of occupied 
map cells intersected by the ray) is key to 
tractable computation of messages from 
SNR factor nodes to position and map 
variable nodes.

The preceding procedure has been 
successfully used to construct 3D maps 
of the campus of the University of Cali-
fornia, Santa Barbara (UCSB), as well as 
of downtown Santa Barbara. Here we 
will present sample results for the latter 
based on about 25 hours of input data 
from four Android devices. Figure 6(a) 
shows an aerial view, with GNSS traces 
in red and mapped region outlined in 
yellow. Figure 6(b) shows the cell occu-
pancy estimates for 2D slices at multiple 
heights. 

We employed a “warm start” with 
prior information based on 2D Open-
StreetMap data employed to initialize 
the map for the first couple of slices. 
Note, however, that, given enough data, 
3D maps can be generated without any 
prior information. (This was the case 
for the 3D maps generated for UCSB 
campus; see A. T. Irish et alia (2014a) 
for details). 

Architecture and 
Implementation
Shadow-based localiza-
tion and 3D SLAM can be 
easily deployed on exist-
ing mobile devices via a 
software development kit 
(SDK), which performs a 
very simple function: send 
GNSS data to “the cloud” at 
regular intervals and receive 
improved position informa-
tion (along with an estimated 
uncertainty) back. The GNSS 
data includes the estimated 
latitude and longitude coor-
dinates, along with the azi-
muth, elevation, and SNR of 

each satellite in view. As shown in Figure 
7, all of the heavy lifting for both real-
time localization and 3D mapping is done 
by means of Internet cloud computing. 

The preceding architecture natural-
ly scales to include additional sources 
of information when available — for 
example, inertial navigation, WiFi, and 
cellular. Such information can be sent 
from mobile device to cloud, and can be 
incorporated into the Bayesian compu-
tations done in the cloud. Such exten-
sions are also under development. 

Conclusions
The accurate urban localization pro-
vided by enhancing GPS with shadow 
matching has the potential to create sig-
nificant commercial benefits, including 
for car/taxi services, delivery services, 
location-based advertising, e911, tour-
ism, and automated and semi-automated 
navigation.  

Several academic research groups 
worldwide have demonstrated the prom-
ise of shadow matching over the past 
few years. However, a key innovation in 
the approach described here is that, in 
contrast to the ad hoc algorithms used 
previously, it is based on a Bayesian 
inference framework that systematically 
accounts for significant modeling uncer-
tainties and nonlinearities, and seam-
lessly extends to incorporate additional 
sources of information as they become 
available. 

FIGURE 6  Shadow SLAM in downtown Santa Barbara.  (a) Mapped area and GNSS traces (b) Horizontal slices of 
estimated 3D map

FIGURE 7  Cloud-based Architecture
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The approach proposed here has 
been demonstrated to provide signifi-
cant improvements in localization over 
raw GNSS estimates in challenging 
high-rise environments such as down-
town San Francisco, with latencies of the 
order of 100 milliseconds. With current 
(and ever decreasing) cloud computing 
costs and the inherent parallelizability of 
the core computation bottlenecks (such 
as ray tracing and particle sampling 
techniques), providing such a service 
is estimated to cost less than one U.S. 
penny per hour per device. 

On the mapping side, shadow-based 
SLAM provides a method for creating 
3D maps from scratch and an effective 
means of refining them from a warm 
start. The former is probably most 
important for military applications. 

For most urban environments 
worldwide, 2D maps together with pub-
lic municipal data on building heights 
can be used to build a coarse 3D map, 
which can subsequently be refined by 
shadowbased SLAM. Even in areas 
where accurate 3D building models are 
available, shadow-based SLAM provides 
the ability to continuously monitor and 
capture changes in the environment 
(e.g., new construction, demolition). It 
also captures features such as trees and 
lampposts. As vehicles migrate towards 
automated operation, a fine-grained 
mapping of features in the environment 
become increasingly important for 
timely decision making in navigation 
and path planning. 

While the cloud-centric architec-
ture described previously in the “Archi-
tecture and Implementation” section 
enables immediate deployment of shad-
ow-matching technology on mobile 
devices via a lightweight SDK, it is also 
of great interest to explore means of effi-
ciently migrating some of the algorith-
mic functionalities to a mobile device. 
Accomplishing such a migration would 
reduce reliance on network connectiv-
ity by exploiting the computational 
resources available on today’s smart 
phones. Self-contained operation with 
limited or no network connectivity is 
also an important feature for incorpo-

rating these advances in urban localiza-
tion into vehicular navigation systems. 
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