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There are many good reasons 
for getting excited about highly 
automated vehicles, or HAVs, 

which is the acronym used by the 
National Highway Traffic Safety Admin-
istration (NHTSA). HAVs can make 
driving more fuel- and time-efficient. 
They can significantly reduce traffic 
congestion and emissions by driving a 
precise speed, minimizing lane changes, 
and maintaining an exact distance to 
neighboring cars. They can also increase 
accessibility and mobility for disabled 
and elderly persons. 

Sharing an HAV instead of owning 
is projected to dramatically reduce a 

household’s yearly transportation bud-
get, which currently ranges between 
approximately $8,000 and $11,000 per 
car. HAVs carry promises not only in 
improved road mobility, and accessibil-
ity, but also in producing architectural 
and societal changes that can make mass 
parking spaces and personal car owner-
ship obsolete in urban areas. Above all, 
HAVs can help improve road safety by 
preventing car accidents that cause more 
than 30,000 deaths/year in the United 
States alone, cost approximately $230 
billion/year in medical and work loss 
costs, and are caused by humans 90% of 
the time.

Promising new technology has recently emerged to increase the level of safety and autonomy 
in driving, including lane and distance keeping assist systems, automatic braking systems, and 
even highway auto-drive systems. Each of these technologies brings cars closer to the ultimate 
goal of fully autonomous operation. While it is still unclear, if and when safe, driverless cars 
will be released on the mass market, a comparison with the development of aircraft autopilot 
systems can provide valuable insight. This review article contains several Additional Resources at 
the end, including key references to support its findings. The article investigates a path towards 
ensuring safety for “self-driving” or “autonomous” cars by leveraging prior work in aviation. 
It focuses on navigation, or localization, which is a key aspect of automated operation. 
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Press articles in the 1950s and 1960s 
predicted that autonomous cars and 
“electronic highways” would become 
widely available by 1975. Major mile-
stones in the use of new sensor, compu-
tation, and communication technology 
have recently reenergized the eager-
ness for HAVs. This first started with 
the 2005 “DARPA Grand Challenge”, 
where four different HAVs designed by 
teams of engineers from industry and 
academia completed a 132-mile trip 
across the Mohave desert in less than 7.5 
hours with no human intervention. The 
2007 DARPA “Urban Challenge” saw six 
teams autonomously complete a 60-mile 
course in an urban environment, while 
following traffic laws. Most teams used 
a combination of LiDAR, cameras, dif-
ferential GPS, and computation power 
that is multiple orders of magnitude 
higher than what is typically needed for 
a commercial passenger vehicle. In 2009, 
Google (now Waymo) began designing 
and testing “self-driving” cars, which 
have since accumulated more than three 
million miles in autonomous mode.  

Currently, most car manufactur-
ers have HAV prototype systems and 
Google, Uber, NuTonomy have HAV 
pilot testing programs, including fully 
autonomous systems for public trans-
portation, which, for now, are confined 
to segregated lanes and geo-fenced areas. 
Multiple Tier-2 supplier companies have 
emerged, which specialize in autono-
mous car technology. In early 2017, 36 
companies were registered to test pro-
totype HAV systems on public roads in 
the state of California.  

However, in Figure 1, Gartner’s “2016 
Hype Cycle for Emerging Technologies” 
shows that HAV technology might be 
at the “peak of inflated expectations”, 
approaching the “trough of disillusion-
ment”. Hype cycle curves are non-scien-
tific tools that have been empirically ver-
ified for multiple example technologies 
over many years. Two example emerging 
technologies, commercial unmanned 
aircraft systems (UAS) and virtual real-
ity, are included in Figure 1 for illustra-
tion purposes. The curve’s time scale 
may differ for each technology. One of 

many indicators of 
decreasing expec-
tations on HAVs 
include a reduction 
in press coverage 
and the emergence 
of f i rst negat ive 
news stories, in par-
ticular following the 
May 2016 crash of a 
Tesla Model S whose 
autopilot failed to 
distinguish a white 
trailer truck from 
the bright Florida 
sky. The Model S 
ran under the trail-
er causing its roof to be torn off and 
the operator to lose its life. The car kept 
going full speed on the side of the road 
through two fences until it hit a pole and 
came to a stop.

In parallel, until the end of 2016, 
Google was providing detailed reports 
of their self-driving car performance, 
which were designed to operate in 
real-world urban environments. These 
reports contain records of millions of 
miles driven autonomously, but also 
acknowledge “disengagements”, i.e., 
where the operator needed to take over 
control to avoid collisions. The data 
shows that HAVs are much more likely 
to be involved in collisions, even though 
these collisions are often of lower sever-
ity than in conventional human driving 
[HAVs typically get rear-ended because 
of their unusual road behavior] (see B. 
Schoettle, and M. Sivak, “A Preliminary 
Analysis of Real-World Crashes Involv-
ing Self-Driving Vehicles,” Additional 
Resources). Also, Uber’s autonomous 
taxis in Pittsburg have a reported rate 
of one disengagement per mile autono-
mously driven. 

Moreover, the first fielded autono-
mous systems have revealed new safety 
threats. In particular, the technology’s 
functionality, as perceived by the human 
operator, does not always match the 
intended operational domain: for exam-
ple, there have been cases of highway 
autopilots being used in urban areas and 
passing red lights without slowing down. 

In addition, human-machine interaction 
is at the heart of role confusion (is the 
operator or the HAV in charge?) of mode 
confusion (is the HAV in autonomous 
or manual mode?) and of the operator’s 
trust in this multimodal system. Mis-
interpretation may grow even wilder 
because a given functionality will not 
achieve the same level of performance 
across models and manufacturers, and 
operators may not be aware of the sys-
tems’ independently verified safety rat-
ings. And, within the next few years, 
operators will be expected to anticipate 
hazardous situations and take over 
control. Thus, operating an HAV may 
require more education and different 
training than driving a car manually.

Current Safety Assessment Efforts
To focus this article, first consider the 
Society of Automotive Engineer (SAE) 
International’s classification of driving 
autonomy levels in Table 1. Under Levels 
0 to 2, the human driver is responsible at 
all times, either for driving by himself, or 
for supervising the HAV in autonomous 
mode and taking control if needed. 
Under Levels 3 to 5, the system is self-
monitoring and the driver is expected to 
take control, but only if requested by the 
system. Levels 0-4 provide partial auto-
mation under predefined driving modes 
and circumstances, whereas Level 5 is 
full autonomy. 

The most advanced private car sys-
tems are currently Level 2, and pilot pro-

FIGURE 1  Gartner’s “Hype Cycle for Emerging Technologies”, As of July 
2016 [16].
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grams aim at achieving Level 3, although 
the mere presence of a kill-switch would 
imply that the system is actually Level 
2. The transition from Level 2 to 3 is a 
remarkable leap that has significant 
implications on trust and comfort of 
human-machine interactions, on legal 
responsibility allocation between system 
and driver, and on technical challenges 
to overcome to guarantee passenger 
safety. 

Over the past four years, the most 
publicized approaches to demonstrate 

Level 2 HAV safety have been experi-
mental testing campaigns by Google, 
Tesla and Uber. Google’s approach 
to have HAVs drive millions of miles 
with minimal human intervention has 
been documented up until 2015. At this 
time, Google cars have autonomously 
travelled an impressive three million 
miles. Tesla’s autopilot is reported to 
have driven more than 130 million 
miles – on highways only – before it 
caused a fatality in May 2016. 

In parallel, NHTSA reports about 

3,000 billion miles travelled each year 
on U.S. highways by human drivers, 
with 30,000 deaths caused by traffic 
accidents; this corresponds to about 
one fatality in traffic accidents per 100 
million miles driven in the U.S. But, this 
number accounts for incidents on all 
roads, in all weather conditions, and for 
all vehicle ages and types. Thus, a purely 
experimental, complete proof that HAVs 
match the level of safety of human 
driving would take about 400 years at 
Google’s current testing rate (of approxi-
mately 250,000 test miles per year), and 
would still take many decades if the test-
ing rate increased exponentially. This is 
assuming that no fatalities occur during 
that time, that no major HAV upgrade is 
performed, and that the testing environ-
ment is representative of all U.S. roads.  
Thus, while an experimental proof is 
conclusive, it is not practical. Other, 
analytical, methods must be employed 
to ensure HAV safety.  

Research Challenges In 
HAV Navigation Safety
Multiple technical aspects developed 
over decades for automated flying could 
serve as starting points for automated 
driving systems. Figure 2 shows research 
areas with overlap between aircraft (in 
blue) and car (in yellow) applications. 
Figure 2 is not intended to give a com-
prehensive list of all aspects of auto-
mation, but instead, it shows example 
technical areas that can be addressed 
using similar methods in aviation and 
automotive applications (in the green 
area). For example: 
• performance standards set for soft-

ware, communication, and electron-
ic equipment are already being com-
pared for aircraft versus cars in the 
NHTSA report by Q. D. Van Eikema 
Hommes, Additional Resources.

• the design of aircraft cockpit has 
been continuously improved over 
the past few decades, especially for 
highly-automated Unmanned Air 
Systems (UAS) with a remote pilot 
“in-the-box”; few car manufactur-
ers envision futuristic car interiors 
where humans do not participate 
in driving, but as long as human-
machine interactions are needed, 
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SAE Level Name Description

Human driver monitors the driving environment

0 No Automation The human driver performs all driving tasks at all times.

1 Driver  
Assistance

Either steering or acceleration/deceleration task by the 
system; driver expected to perform all other aspects of 
driving.

2 Partial  
Automation

Both steering and acceleration/deceleration tasks by the 
system; driver expected to perform all other aspects of 
driving.

HAV monitors the driving environment

3 Conditional 
Automation

The HAV performs all driving tasks under limited, pre-
defined conditions, and can request the human driver to 
intervene and take over control.

4 High  
Automation

The HAV performs all driving tasks under limited, 
predefined conditions, without the expectation of any 
human intervention.

5 Full Automation The HAV performs all driving tasks under all conditions.

Table 1  Society of Automotive Engineer (SAE) International’s Levels of Driving Automation

FIGURE 2  Example Similarities and Differences in Future Automated Flying versus Driving. The 
figure shows technical aspects of future automation that may be common to aviation and 
automotive applications (in the center of the figure), versus others that are specific to each 
application (towards the edges). 
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lessons learned in cockpit design to 
avoid information overload are key.

• while Automatic Dependent Sur-
veillance-Broadcast (ADS-B) will be 
mandatory on all aircraft by 2020, a 
petition for proposed rule making 
has been issued to mandate Vehicle-
to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) by the same 
date. (ADS-B is a situational aware-
ness system for collision avoidance, 
through which aircraft share their 
positions with Air Traffic Control 
and with other aircraft.)

• GNSS/INS navigation systems, 
which are extensively used in safety-
critical aircraft navigation, are also 
being investigated for HAVs.

• overall safety standards also have 
similarities for aircraft and HAVs, 
which are discussed again below.
The focus of this article is on navi-

gation safety. In aviation navigation, 
safety is assessed in terms of integrity 
(as well as accuracy, continuity, and 
availability, which are not discussed for 
brevity). Integrity is a measure of trust 
in sensor information: integrity risk is 
the probability of undetected sensor 
errors causing unacceptably large posi-
tioning uncertainty (See RTCA Special 
Committee 159, “Minimum Aviation 
System Performance Standards for 
the Local Area Augmentation System 
(LAAS), Additional Resources”). This 
top-level quantifiable performance 
metric is sensor- and platform-inde-
pendent, and can thus be used to set 
certifiable requirements on individual 
system components to achieve and 
prove an overall level of safety.  

The multiple separate efforts towards 
achieving Levels 3-to-5 HAVs reveal a 
compelling lack of coordination towards 
a common, uniform, quantifiable safety 
goal. Integrity can be used as an objec-
tive performance metric for open, trans-
parent comparison and categorization 
across manufacturers. It can also pro-
vide a governmental regulating agency 
performance and testing standards for 
HAV certification, which would help 
accelerate the development, growth, and 
maturation of such HAVs, as displayed 
in Figure 3. 

Moreover, the Federal Aviation 

Ad m i n i s t r a t ion 
(FAA) has devel-
ope d an a ly t i c a l 
methods to evaluate 
integrity. This pro-
vides the means to:
• quantify safe-

ty of exist ing 
mu l t i - s e n s o r 
systems under a 
variety of oper-
ating environ-
ments, thereby 
re duc i ng  t he 
need for experi-
mental testing 

• allocate safety requirements to indi-
vidual system components to achieve 
an overall target level of safety, there-
by enabling design for safety

• perform risk prediction, which is 
a key operational feature to enable 
hazard avoidance maneuvers
Several methods have been estab-

lished to predict the integrity risk in 
GNSS-based aviation applications, 
which are instrumental in ensuring the 
safety of pilots and crew. As an example, 
Figure 4 illustrates a simplified definition 
of the integrity risk for aircraft landing 
applications. The aircraft positioning 
prediction is uncertain because of sen-
sor measurement noise. An alert limit 
(AL) requirement box is represented 
around the predicted aircraft position. 
This AL is set by the certification author-
ity, i.e., by the FAA in this application. 
Simply put, the risk of the actual aircraft 
position being outside the AL box is the 
integrity risk. (In practice, the most 
challenging part of risk prediction is to 
account for potentially undetected sen-
sor faults, such as excessive GNSS satel-
lite clock drift.) 

Unfortunately, the same methods 
do not directly apply to HAVs, because 
ground vehicles operate under sky-
obstructed areas where GNSS signals 
can be altered or blocked by buildings 
and trees. In general, the HAV environ-
ment is much more unpredictable than 
the aircraft’s, for reasons that include:
• a changing environment:  traffic 

lights, construction, impact of rain 
on road adherence, sensor masking 
and occlusions, 

• environmental diversity: intersection 
topography, road conditions, mark-
ings on ground, various traffic signs

• road users that may interfere with 
HAV motion: other cars, trucks, 
pedestrians, bicyclists, etc.

• comparatively large number of car 
manufacturers, equipment suppliers, 
and vehicle models, as well as with 
shorter model cycles than aircraft, 
causing wide variations in vehicle 
age and maintenance levels

• non-uniform vehicle and road regu-
lations at both the state and federal 
levels in the U.S. coupled with dif-
ferent international standardization 
processes 

FIGURE 3  Motivation and outcomes for using analytical integrity evalu-
ation methods to quantify and predict safety. 
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FIGURE 4  Safety Risk Prediction Concept. To ensure safety, the predicted vehicle position must 
be within a predefined acceptable limit called the “alert limit” (AL) box. Integrity is the proba-
bility of the vehicle being inside the box while accounting for both nominal sensor errors and 
faults. The AL box is an order of magnitude smaller for HAV than it is for aircraft applications.
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Thus, HAVs require sensors in addi-
tion to GNSS, including laser scanners, 
radars, cameras, and odometers. 

The parallel between aircraft and 
car applications in Figure 4 illustrates 
the significant challenge that lies ahead 
when bringing aviation safety standards 
to HAVs. It took decades of research and 
considerable resources to bring the alert 
limit requirement box down to 10 meters 
above and below the aircraft using the 
FAA’s GPS augmentation systems (the 
Wide-Area Augmentation System and 
the Local Area Augmentation System). 
For a car to stay in its lane, the alert limit 
requirement box must be an order of 
magnitude smaller, and has to maintain 
this level of safety in a more dynamic 
and unpredictable environment.

HAV Taxonomy
Creating a path to successful automated 
navigation requires an overall meth-
odology to prioritize on imminently 
achievable objectives, and then expand 
to more challenging missions. First in 
this HAV taxonomy, a classification 
using six SAE autonomy levels has been 
presented in Table 1. This classification 
is further refined by segmenting a car’s 
trip into basic driving competencies, 
and by specifying the conditions under 
which a given HAV shall achieve these 
competencies. A similar classification 
was made in the early days of GPS-
based commercial aircraft navigation 
safety analysis, where distinctions were 
made between different phases of flight, 
weather conditions, vehicle equipment, 
and airport infrastructure capabilities. 

For example, in the early 1990’s, 40% 
of aircraft accidents were occurring dur-
ing final approach and landing, and 26% 
during take-off and initial climb, which 
only represented an average of 4% and 
2% of flight time, respectively. The FAA 
therefore concentrated their efforts on 
improving safety during these phases 
of f light. GPS augmentation systems 
were designed, with varying capabili-
ties depending on airborne equipment 
and airport infrastructure, to guide 
the aircraft under the cloud ceiling, or 
to bring it all the way to touch-down. 
Similarly, the “first and last mile” are 
identified as the most challenging parts 

of HAV operations, whereas highway 
auto-drive systems have already been 
developed and implemented. In its 2016 
Federal Automated Vehicles Policy, 
NHTSA identifies 28 HAV behavioral 
competencies, which are particularly 
challenging to meet in the first and last 
miles of a typical trip. These competen-
cies are basic abilities that an HAV must 
have to complete nominal driving tasks; 
they include, for example, lane keeping, 
obeying traffic laws, and responding to 
other road users. 

To better describe an HAV’s ability, 
the Federal Automated Vehicles Policy 
further specifies that basic driving com-
petencies should be available under an 
HAV’s predefined Operational Design 
Domain (ODD), described by its geo-
graphical location, road type and con-
dition, weather and lighting condition, 
vehicle speed, etc. The ODD captures the 
circumstances under which an HAV is 
supposed to operate safely.

Such classification is key to safety 
analysis. It can allow HAVs at different 
stages of their development to be simul-
taneously fielded, and for them to evolve 
by expanding their ODDs. The classifi-
cation can also help in identifying geo-
graphical areas where improved road 
infrastructure is needed for automated 
operation, similar to airports requiring 
equipment for instrument navigation to 
deal with higher traffic density. 

Furthermore, standards for electron-
ic equipment, measured by Automotive 
Safety Integrity Levels, have been issued 
and compared with the aviation’s Design 
Assurance Levels (DAL). And, overall 
system safety levels have been codified, 
which in aviation account for both the 
severity and probability of occurrence of 
an incident, and in automotive applica-
tions account, in addition, for “controlla-
bility”, which is a measure of how likely 
an average driver is to maneuver out of 
a given imminent danger.  

All of the above elements: (a) HAV 
autonomy level, (b) basic driving com-
petency, (c) operation design domain, 
(d) vehicle electronic equipment, and 
(e) overall safety risk requirement must 
be specified to carry out a formal HAV 
safety analysis. Still missing from the 
HAV documents are clear guidelines, or 

example methods, on how to implement 
these safety requirements. 

A Path Towards HAV Navigation Safety 
When quantifying the safety of HAV 
navigation systems, such as in the 
example displayed in Figure 5, every 
component of the system including raw 
sensors, estimator and integrity moni-
tor, and safety predictor, can potentially 
introduce risk. Unlike aircraft, HAVs 
require multiple and varied sensors to 
compensate for GPS signal blockages 
caused by buildings and trees. These 
sensor types must be integrated, and 
new methods to evaluate the integrity of 
multi-sensor systems must be developed.  
Furthermore, HAVs must have the abil-
ity to continuously predict integrity in a 
dynamic HAV environment. 

In general, research on analytical 
evaluation of HAV navigation safety 
is sparse. For example, J. Lee et alia, 
Additional Resources use the concept 
of a “safe driving envelope,” but the 
approach focuses mostly on collision 
avoidance. The paper by O. Le March-
and, et alia, evaluates ground vehicle 
navigation, but shows an “approxi-
mate radial-error” of tens of meters, far 
exceeding the necessary sub-meter alert 
limit. A multi-sensor augmented-GPS/
IMU system is used in the paper by R. 
Toledo-Moreo, et alia with “horizontal 
trust levels” of 7 meters to 10 meters, still 
an order-of-magnitude higher than the 
required HAV alert limit.

Multi-sensor integrity is addressed by 
M. Brenner, Additional Resources, but for 
a sensor combination specific to aviation 
and insufficient for terrestrial mobile 
robots. Other approaches to multi-sensor 
integration show promise, but do not pro-
vide rigorous proof of integrity. In fact, 
most publications use pose estimation 
error covariance as a measure of perfor-
mance, which is understood as not being 
sufficient, but is the only metric currently 
available. Most critically, the metric does 
not account for fault modes introduced 
by feature extraction and data associa-
tion, two algorithms commonly used in 
mobile robot localization (and discussed 
again below).

Unlike GPS, which gives absolute 
position fixes, IMUs, LiDAR, radar, and 
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cameras provide relative displacements with respect to a previ-
ous time-step, or with respect to a map. Thus, measurement 
time-filtering is required, which makes integrity risk evaluation 
more challenging since past-time sensor errors and undetected 
faults can now impact current-time safety. 

Example LiDAR Navigation Safety Evaluation
While safety quantification for GNSS and GNSS/INS has been 
rigorously performed for aviation applications, and is being 
researched for HAVs, navigation safety for LiDAR, radar, 
camera, and multi-sensor navigation is a widely unexplored 
research area. To provide a specific example on the research 
work that lies ahead, we have started developing safety risk 
evaluation methods for LiDARs. We selected LiDARs because 
of their prevalence in HAVs, of their market availability, and 
because of our prior experience. However, the techniques we 
are developing are general enough that radar, cameras, or any 
future sensor that returns range data can be substituted.  

Raw range data must be processed before it can be used for 
navigation. One technique, visual odometry, establishes corre-
lations between successive scans to estimate sensor changes in 
pose (i.e., position and orientation). These processes are highly 
computationally intensive, and have the same problems as other 
dead-reckoning techniques, such as wheel odometry over time. 
Thus, they can become inaccurate or cumbersome for HAVs 
moving over multiple time epochs. Although proprietary infor-
mation regarding the use of visual odometry by HAV manu-
facturers is unavailable, the research literature suggests that 
it is only used for short time scale operations. A second class 
of algorithms provides sensor localization by extracting static 
features from the raw sensor data and associating those features 
to a map. This is typically done in two steps, as illustrated in 
Figure 6: feature extraction (FE) and data association (DA). The 
resulting information can then be iteratively processed using 

sequential estimators (e.g., Extended Kalman fil-
ter or EKF), which has been readily used in many 
practical applications.

There are several problems that the FE and DA 
algorithms are addressing. First, landmarks in the 
environment are unidentified, and their observa-
tions are not tagged in a manner similar to a GNSS 
satellite signal’s Pseudo Random Noise (PRN) 
number. Thus, the feature extraction algorithm 
must isolate the few most consistently identifiable, 
viewpoint-invariant landmarks in the raw sen-
sor data. These features must be identifiable over 
repeated observations and distinguishable from 
one landmark to another. Features that are difficult 
to distinguish from each other can be found easily, 
but the possibility that the association is incorrect 
will greatly negatively impact the integrity risk. 

Second, range data based on extracted features 
must match those features with those from a fea-
ture database or map. Data association algorithms 
accomplish this; however, incorrect associations 
commonly occur. These can lead to large naviga-

tion errors, as illustrated in Figure 6, thereby representing a 
threat to navigation integrity.  

FE and DA can be challenging in the presence of sensor 
uncertainty. This is why many sophisticated algorithms have 
been devised. But, how can we prove whether these FE and DA 
methods are safe for life-critical HAV navigation applications, 
and under what circumstances? These research questions are 
currently unanswered. The most relevant publications on 
DA risk are found in literature on multi-target tracking. For 
example, in the paper Y. Bar-Shalom and T. E. Fortmann, an 
innovation-based nearest-neighbor DA criterion is introduced, 
which serves as basis in many practical implementations. 
The article by Y. Bar-Shalom, et alia, “The Probabilistic Data 

FIGURE 5  Example HAV Navigation System.  Key Sensors are represented on top. Their 
measurements are processed to estimate HAV position, velocity and orientation, 
and then to predict safety risk and send alerts if needed.
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FIGURE 6  Impact of Incorrect Association on Vehicle Trajectory Estima-
tion. The position-domain integration scheme on the right-hand 
side experiences a missed association when the measurement-
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Association Filter,” provides a detailed 
derivation of the probability of correct 
association given measurements. How-
ever, this Bayesian approach is not well 
suited for safety-critical applications 
due to the lack of risk prediction capa-
bility, and to the problem of bounding 
the a-posteriori probability of associa-
tion (a similar issue is encountered in 
the paper by F.C. Chan, et alia]). Anoth-
er insightful approach is followed in the 
paper by J. Areta, et alia]. However, it 
makes approximations that do not 
necessarily upper-bound risks, hence 
do not guarantee safe operation, and it 
presents exact solutions that can only be 
evaluated using computationally expen-
sive numerical methods, not adequate 
for real-time navigation. Also, the risk 
of FE is not addressed.

In response, we have been developing 
a new, computationally-efficient integ-
rity risk prediction method to ensure 
safety of localization using LiDAR-based 
FE and DA. We have derived a multi-
ple-hypothesis innovation-based DA 
method that provides the means to pre-
dict the probability of incorrect associa-
tions considering all potential landmark 
permutations. (For more details on these 
methods, see the following four papers in 
Additional Resources, Nos. 31, 49, 50 and 
51.) We also determined a probabilistic 
lower bound on the minimum feature 
separation, which is guaranteed at FE, 
with pre-defined integrity risk allo-
cation. The separation bound can be 
incorporated in an overall integrity risk 
equation. This new method was ana-
lyzed and tested to quantify the impact 
of incorrect associations on integrity 
risk. It showed that the positioning 
error covariance can be a misleading 
safety performance metric since cases 
were found where the contributions of 
incorrect associations to integrity risk 
far surpassed that of nominal errors 
accounted for in the positioning error 
covariance. In addition, the following 
key safety-tradeoff was illustrated: the 
more measurements are extracted, the 
lower the integrity risk contribution is 
under the correct association hypoth-
esis, but the higher the other integrity 
risk contributions become because the 
risk of incorrect associations increases in 

the presence of cluttered, poorly-distin-
guishable landmarks. Finally, being sur-
rounded by many landmarks increases 
the probability of continuous, uninter-
rupted navigation. The next step of this 
research aims at dealing with unmapped 
and non-static obstacles, and at quanti-
fying the continuity risk of FE and DA. 

Conclusion
Looking at the emergence of future HAV 
technology with the prior experience of 
aircraft navigation safety provides the 
means to scale up the challenges that 
lie ahead in the development of fully 
autonomous (Level 4 and 5) driverless 
cars. Many parallels can already be 
drawn between aviation safety require-
ments and early HAV standards and 
regulations. Still, the methods to fulfill 
these standards and regulations have to 
be established. If analytical methods are 
pursued, the following tasks need to be 
accomplished: (1) establish high-integ-
rity raw sensor measurement error and 
fault models for non-GPS sensors; (2) 
develop analytical methods to quantify 
the safety risk of feature extraction and 
data association algorithms required in 
LiDAR, radar, and other pre-processing 
steps in camera-based localization; (3) 
design multi-sensor pose estimators 
and integrity monitors to evaluate the 
impact of undetected sensor faults on 
safety risk; and (4) derive, analyze, and 
experimentally implement integrity risk 
prediction in dynamic environments. 

If these challenges are overcome, 
one will be able to quantify and prove 
the performance of an HAV’s naviga-
tion system — an essential part of safety. 
Proving navigation system integrity will 
also help give humans more confidence 
to trust HAVs, thus further develop-
ing the symbiotic relationship between 
humans and co-robots. Finally, as HAV 
technology progresses from driver’s aids 
such as active brake assist to full autono-
mous driving, this research is relevant 
now and will remain essential through-
out the evolution of HAV technology.
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