
Inertial-Based Joint  
  Mapping and Positioning for 
     Pedestrian Navigation

Digital cartography and automat-
ed mapping techniques based 
on GNSS positioning have 
transformed our relationship 

to the physical world. The convergence 
of these complementary technologies 
are supporting the growth of commer-
cial and consumer location-based appli-
cations that benefit from the coupling 
of real-time information with maps that 
are more current than ever — at least in 
environments that have access to radio 
signals from orbiting GNSS satellites.

Buildings, roads, mobile assets, 
points of interest, and people can be 
located outdoors based directly on 
GNSS-derived geographic coordinates 
or conventional addresses tied to these 
coordinates. Such advances, however, 

SLAM Dance 
Imagine walking into a strange 
place — a shopping mall or an 
office building — wandering 
around for 20 minutes or so, 
and then coming out with a 
map of the facility that others 
could use to navigate through 
it — say, a fire rescue crew 
or simply someone looking 
for an office suite.  A team 
of researchers at the German 
Aerospace Center are working 
on a “walk-about” solution 
that uses GPS to initialize the 
beginning of the traverse and 
tie the position data to an 
absolute coordinate frame. 
Then, foot-mounted inertial 
sensors increase the map 
accuracy when a person revisits 
previous points in the building.
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are largely denied to us in underground or indoor venues where 
satellites signals do not reach.

Many prospective location-based service (LBS) applications 
— including safety-critical needs for emergency and security 
services — would become feasible if the associated mapping and 
real-time positioning requirements could be met. Finding alter-
native technologies that can meet these challenges have drawn 
the attention of many researchers and system developers.

Recent work has shown remarkable advances in the area 
of pedestrian indoor positioning aided by low-cost microelec-
tro-mechanical system (MEMS) inertial sensors. At present, 
however, fully autonomous inertial navigation is still far from 
the realm of possibilities, due to sensor error–induced drift 
that causes position errors to grow unbounded within a few 
seconds. 

This article introduces a new pedestrian localization tech-
nique that builds on the principle of simultaneous localiza-
tion and mapping (SLAM). Our approach is called FootSLAM 
because it depends largely on the use of shoe-mounted inertial 
sensors that measure a pedestrian’s steps while walking. 

In contrast to SLAM used in robotics, our approach does 
not require specific feature–detection sensors, such as cameras 
or laser scanners. The work extends prior work in pedestrian 
navigation that uses known building plan layouts to constrain 
a location-estimation algorithm driven by a stride-estimation 
process. In our approach, building plans (i.e., maps) can be 
learnt automatically while people walk about in a building, 
either directly to localize this specific person or in a offline 
fashion in order to provide maps for other people. 

We have combined our system with GPS and have under-
taken experiments in which a person enters a building from 
outside and walks around within this building. The GPS posi-
tion at the entry to the building provides a point of beginning 
for subsequent positioning/mapping without GPS.

Our experiments were undertaken by recording the raw 
sensor data and ground truth reference information. Offline 
processing and comparison with the ground-truth reference 
information allows us to quantitatively evaluate the achieved 
localization accuracy.

Building on the Past
The work of E. Foxlin cited in the Additional Resources 
section at the end of this article describes how we can use 
foot-mounted inertial measurement units (IMUs) to provide 
zero velocity updates — ZUPTs — during the rest phase of a 
pedestrian’s stride with which to solve the problem of non-
linear error growth over time with the aid of a Kalman filter. 
This is because an inertial navigation system (INS) can use 
the ZUPTs to accurately compute the displacement of the foot 
during a single step before errors would start to grow. 

The zero update tells us when the step has been completed 

(resting phase of the foot) and enables us to estimate some of the 
IMU sensor error states because we know that the velocity of the 
sensor array at that point in time must be zero in all axes.

Nevertheless, errors still accrue over time, especially the 
heading error, which is only weakly observable from these 
ZUPTs. This can be seen in the plots in Figure 1, which are 
derived from ZUPT-aided inertial navigation data logged dur-
ing two walks around an office environment shown schemati-
cally in Figure 2. 

This figure also shows an overlay of a hexagon map learnt 
with FootSLAM, based on a walk of about 13 minutes; in the 
article we will explain how these maps are learnt by the sys-
tem. The FootSLAM mapping process learns which areas are 
accessible to a pedestrian and our short walk used to generate 
the map in Figure 2 only covered the corridor and some of the 
rooms. The more an area is explored, the more complete the 
resulting map will become.

Aiding can be performed using a magnetometer but this 
sensor also suffers from deviations in the observed magnetic 
field, especially indoors. Of course, aiding with satellite naviga-
tion systems (e.g., GPS) when available allows for reasonable 
accuracy outdoors and during short GPS outages.

FIGURE 1  Plots from two walks around an office environment. Shown is 
ZUPT-aided inertial navigation based on a foot mounted IMU.

FIGURE 2  Building environment in which the data from Figure 1 was 
recorded; one rectangular corridor circuit and rooms to the inside and 
outside of it. Also shown in light blue is an overlay of a small map learnt 
by FootSLAM after a 13 minute walk.
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Recently, three groups independently showed that foot 
mounted indoor positioning systems work remarkably well 
when aided by known building layouts or maps. (See the arti-
cles in Additional Resources by O. Woodman and R. Harle, S. 
Beauregard et alia, and B. Krach and P. Robertson.) Because 
we can reasonably assume that pedestrians are not able to walk 
through walls, such information should be used by any optimal 
or close-to-optimal positioning system. 

In the cited work, researchers used particle-filtering algo-
rithms to incorporate the map information in order to constrain 
particle movement to within the areas accessible to a pedestri-
an. Particle filters (PF), also known as sequential importance 
sampling, are a member of a large family of algorithms that are 
more or less optimal in the Bayesian filtering sense. 

By incorporating a sufficiently accurate map that constrains 
pedestrian movements adequately, we can achieve long-term 
error stability can be achieved when the map is sufficiently 
accurate and sufficiently constrains the motion. Most indoor 
environments, such as offices and public buildings, allow us to 
meet both criteria. 

The use of maps is also quite natural for indoor LBS applica-
tions such as being directed towards a particular office, because 
a given geographic coordinate would usually have to be placed 
in the context of a symbolic location, such as a room number 
or corridor section within a building. In order for this approach 
to work, the map information needs to be known and free of 
major inaccuracies.

Robotic SLAM
For many years the robotics community has used various sen-
sors, such as laser ranging scanners and cameras, to perform 
high-precision positioning of robots in buildings. Nearly two 
decades ago, researchers from this community introduced 
SLAM as a way of allowing robots to navigate in a priori 
unknown environments. (See the article by R. Smith et alia in 
Additional Resources.)

In robotic SLAM, a moving robot explores its environment 
and uses on-board sensor information and odometry control 
inputs to build a “map” of landmarks or features. Odometry 
usually refers to the control signals given to the driving wheels 
of the robot — and we can characterize the simple integration 
of these odometry signals as a form of dead reckoning.

SLAM methods fall into two main categories: EKF-SLAM, 
which employs an extended Kalman filter (EKF) to represent 
the large joint state space of robot pose (position and orienta-
tion) and all landmarks identified up to a given point in time, 
and FastSLAM, which uses a Rao-Blackwellized particle filter 
in which each particle effectively represents a pose and set of 

independent compact EKFs for each landmark. (See discus-
sion in the article by M. Montemerlo et alia cited in Additional 
Resources.)

The conditioning on a pose allows the landmarks to be esti-
mated independently, thus leading to lower complexity. SLAM 
implementations for robot positioning always build on sensors 
and robot odometry, as these are readily available on robot 
platforms. The sensors can, for example, consist of laser rangers 
or a single or multiple cameras mounted on the robot platform. 
Landmark features are extracted from the raw sensor data. 

Simultaneous localization and mapping is considered to 
be a “difficult” problem, in contrast to the two easier special 
cases: positioning in an environment with known landmarks 
or building a map of features given the true pose of the robot 
or other platform.

SLAM for Pedestrian Dead-Reckoning 
This article builds on both areas of prior work on pedestri-
an positioning using foot mounted IMUs as well as the just-
described SLAM approach used in robotics. Our application is 
human pedestrian positioning based on SLAM — that is, the 
difficult case where no map is available beforehand. 

The main difference from robotic SLAM is that our method 
uses no visual or similar sensors at all. In fact, the only sensors 
used are the foot-mounted IMU and, optionally, a magnetom-
eter and GPS receiver. In this article, we show that a pedestri-
an’s location and the building layout can be jointly estimated 
by using the pedestrian’s odometry alone, as measured by the 
foot-mounted IMU. 

We have confirmed our approach by using real data obtained 
from a pedestrian walking in an actual indoor environment. 
Our experiments involved no simulations, and we will present 
the results from these in later sections.

 Our application domain differs significantly from that 
of traditional uses of robotic SLAM by primarily seeking to 
achieve automated generation of maps that can be used later by 
people wishing to navigate in the building. These maps can be 
derived from sensor data collected by individuals who them-
selves have no need for positioning, the data being processed 
offline. 

Employing such user-generated data significantly reduces 
the computational requirements (because processing need not 
be real-time), and our approach still works even in cases where 
the joint estimation of position and maps would yield a very 
large position uncertainty during the time when a building is 
first visited.

Although our work indicates that an accurate position esti-
mate can be maintained after (and often prior to) convergence 
of the algorithm for the foot-mounted IMU upon “loop closure” 
(when the pedestrian retraces previous steps or areas), this is 
not a necessary condition in our application. Better sensors 
might, however, make the achievement of real-time FootSLAM 
very practical.

Before moving on to the theoretical basis, we shall present a 
brief intuitive explanation of the FootSLAM algorithm.

These maps can be derived from 
sensor data collected by individuals 
who themselves have no need for 
positioning, the data being processed 
offline.
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As pointed out earlier the odometry errors mainly affect the 
pedestrian’s estimated heading. Consequently, the measured 
track will be distorted much in the same way as randomly 
bending a piece of wire that originally represented the track 
accurately. 

FootSLAM works by testing a very large number of ran-
domly chosen correcting adjustments to the distorted piece 
of wire and rewarding those adjustments that lead to a regu-
lar structure. The algorithm also imposes a cost in that large 
adjustments are more expensive than smaller ones; this avoids 
over-fitting. 

In fact, this balance of map regularity and adjustment pen-
alty is the direct result of the optimal mathematical FootSLAM 
derivation. The algorithm we use to achieve this belongs to the 
family of “Sequential Monte Carlo” or “particle filtering” tech-
niques.

Theoretical Basis of FootSLAM
Human motion is a complex stochastic process, and we need 
to model it in a sufficiently simple fashion in order to develop 
our FootSLAM model and the algorithms that build on this 
model. 

A person may walk in a random fashion whilst talking 
on a mobile phone, or they might be following a more or less 
directed trajectory towards a certain destination. Such phases 
of motion are governed by the person’s inner mental state and, 
consequently, cannot be easily estimated. 

As described in the paper by M. Khider et alia, a two-state 
Markov process can be used that allows a model of human 
motion to oscillate between a more random motion and tar-
geted motion. 

In order to understand the concept of the kind of map 
that we generate and use in our work, consider the following 
situation: An able-sighted person (for our purposes, equipped 
with FootSLAM) is standing inside a shopping center facing 
a wide area in front of him (see Figure 3). The next step(s) that 
this person chooses to take is influenced by two main kinds of 
governing factors:
• 	 the presence of nearby physical constraints, such as walls, 

obstacles, other people, and so forth 
• 	 the presence of visual cues in the environment that allow the 

person to orientate himself and enable him to decide which 
future trajectory he wishes to follow in order to achieve 
some higher level goal, such as reaching a destination.
In contrast to robotic SLAM we have, of course, no direct 

access to the visual cues that our subject sees. However, we 
do have noisy measurements of the resulting motion, i.e., the 
steps taken from an initial position. In a way we can state that 
we implicitly observe these physical constraints and visual fea-
tures/cues by observing the pedestrian’s steps as measured by 
the foot-mounted IMU. 

The subject may now wish to enter the wide area in front or 
may actually be on the way down to the level below. Knowledge 
of previous motion would allow us to infer more about possible 
future actions. 

In principle we could take one of two approaches: either 
interpret the scene and somehow infer from the overall context 
what steps are most likely to follow next, or observe many pre-
vious similar trajectories by the same person or other people 
in this environment and make a prediction based on such a 
learnt Markov process. 

For our work we follow the second approach and limit the 
associated Markov process to just a single step (first order). In 
other words, we will represent the possible future next step 
of the subject based only on their current location, and we 
will learn the probabilities of each possible next step through 
observation. This would be simple enough if we had perfect 
knowledge of the person’s location at all times, just as robotic 
map learning is simple in the case of a known pose. 

In a nutshell, we will follow the FastSLAM approach where-
by each particle assumes a certain pose history and estimates 
the motion probabilities conditioned on its particular assump-
tion. Given a sufficient number of particles we can, in principle, 
cover the entire space of possible position histories. 

Particles are weighted by how “compatible” their motion is 
with their previous observations of how the subject had walked 
when in a certain position. As we shall see, the algorithm con-
verges remarkably quickly as long as the person revisits loca-
tions once or twice during the estimation process.

Our Model as a Dynamic Bayesian Network
Our work is based on a theoretically well-grounded representa-
tion of the Dynamic Bayesian Network (DBN) that represents 
the pedestrian’s location, her past and present motion, the step 
measurements computed by the lower level EKF, and the “map” 
(see Figure 4). 

This approach is used in all kinds of sequential filtering 
problems where noisy observations are used to estimate an 
evolving sequence of hidden states. Each node in the DBN rep-
resents a random variable and carries a time index. Arrows 
from one state variable to the next denote causation (in our 

FIGURE 3  Illustration of some of the visual cues that individuals might use 
to orient themselves and to plan a trajectory. Shown are some obstacles 
in the direct vicinity as well as some elements that serve as landmarks 
(ovals).
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interpretation); so, arrows can never go 
backwards in time. 

The arrows can be read in this way: 
all incoming arrows originate in state 
variables (parent states) that influence 
the value — in a probabilistic sense 
— of the target (child). In this DBN we 
have the following nodes (random vari-
ables):
• 	 pose Pk: The location and the orienta-

tion of the person in two dimensions 
(2D) (with respect to the main body 
axis)

• 	 step vector Uk: the change from 
pose at time k−1 to pose at time k. 
See Figure 5. Bear in mind that the 
step transition vector Uk has a spe-
cial property: knowing the old pose 
Pk−1 and the new pose Pk enables 
us to determine the step transition 
Uk entirely — just as knowledge of 
any two of the states Pk−1, Pk, and Uk 
determines the unknown variable.

• 	 inertial sensor errors Ek: all the corre-
lated errors of the inertial system, for 
instance, angular offsets or drifts.

• 	 step measurement : A measure-
ment subject to correlated errors Ek 
as well as white noise. See Figure 6 for 
a detailed definition of the pertinent 
coordinate systems and step repre-
sentations. Note that p( |Uk,Ek) 
encodes the probability distribution 
of the step measurement conditioned 
on the true step vector and the iner-
tial sensor errors.

• 	 the visual cues which the person sees 
at time k: Visk.

• 	 the intention of the person at time k: 
Intk is memoryless in that the result-
ing intention given a visual input is 
fully encoded in the probability den-
sity p(Intk|Visk).

• 	 the map M is time invariant and can 
include any features and information 
(such as human-readable signs) to let 
the pedestrian choose Int. 
Our overall goal is to estimate the 

states and state histories of the DBN 
given the series of all observations  
from the foot-mounted IMU (and any 
additional sensors, if they are present). 
The goal in a Bayesian formulation is to 
compute the joint posterior,

which following the RBPF particle filter-
ing approach we can factorize into

We need to emphasize that the addi-
tional states — encoding vision and 
intention — of our pedestrian are never 
actually used; they only serve as impor-
tant structural constraints in the DBN 
(linking Pk−1 and M as “parent” nodes 
of Uk). The further steps of the formal 
derivation of the Bayesian Filter and the 
RBPF particle filter are described in the 
article by P. Robertson et alia listed in 
Additional Resources.

Pedestrian Steps and Step 
Measurements
In this section we will show details on 
how we represent the step transition 
vector between two 
steps that a person 
takes (see Figure 5) 
and also discussed 
in further detai l 
in the article by B. 
Krach and P. Rob-
ertson (Additional 
Resources).

In order to sepa-
rate the process of 
updating the iner-
tial computer driv-
en by the IMU and 
the ZUPTs from 
the overall SLAM 
estimation, we have 
resorted to a two-
tier processing in 
which a low-level 
extended Kalman 
filter computes the 
length and direction 
change of individual 
steps. This step esti-
mate is then incor-
porated into the 
upper level particle 
filter in the form of a 
measurement. Note 
that this is a math-

ematical model that links the measure-
ments received from the lower level EKF 
to the modeled pedestrian and his/her 
movement, as well as a simple represen-
tation of errors that affect the measured 
step.

We define a step to be the movement 
of the shoe that is equipped with the 
IMU from one resting phase to the next. 
The transition and orientation change 
of the foot is strongly coupled to that of 
the rest of the body: we assume the posi-
tion of the pedestrian to be that of the 
relevant foot but will follow a different 
definition of the person’s orientation. 

The orientation of the pedestrian 
could be interpreted as where the person 
is looking (head orientation). In our con-
text, however, we find it more useful to 
interpret the main body axis as defining 
orientation, because this axis is usually 
close to that of the foot. 

We then introduce an angular devia-
tion between this body orientation in 

“Know two,
compute the 
third”

New pose: location and orientation

Old pose: location and orientation

Step vector: translation and 
orientation change w.r.t. old pose

FIGURE 5  Definition of the step and its measurement. We use the notation 
U to denote similarity to robotic odometry. In humans, the true pose 
change U is always unknown - it is the actual step taken. In robotics 
U is the known control input to the motors. The pertinent coordinate 
systems and error sources are explained in Figure 6.

Time k–1 Time k Time k+1

U UU

FIGURE 4  Dynamic Bayesian Network (DBN) for FootSLAM showing three 
time slices and all involved state (random) variables. The map can 
include any features and information to let the pedestrian choose their 
Intention Int. This DBN is the basis for the formal derivation of the 
Bayesian filtering algorithm.

slam dance
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space and that of the foot (IMU). This 
interpretation is important when we 
draw on additional body-mounted orien-
tation sensors such as a magnetometer. 

The complete system has, in total, 
four coordinate systems:
•	 the IMU local reference system with 

respect to the beginning of step mea-
surements (i.e., INS calculation) at 
the lower filtering level

•	 a coordinate system aligned to the 
heading of the IMU at the last step 
rest phase at the lower filtering level 
(called IMU zero heading) 

•	 a coordinate system at the higher 
level filter aligned to the heading of 
the person’s body at the last step rest 
phase (called person zero heading)

• 	 the global navigation coordinate sys-
tem at the higher level filter in which 
the position estimate and orientation 
are computed (as well as the map).
In Figure 6 we have shown the final 

three of these coordinate systems but 
have not explicitly represented the angles 
linking the last two (which are trivial). 
We assume that the step measurement 
suffers from both additive white transla-
tional noise and white noise on the esti-
mated heading change of the IMU. 

Moreover, we assume that an additive 
colored angular error appears between 
the true directional change of the per-
son’s body and that measured by the INS 
(which we call odometry heading drift). 
Lastly, we assume a very slowly changing 
angular offset between the person’s body 
heading and IMU heading — for illustra-
tive purposes we call this the duck angle 
because such an animal would typically 
experience a large static angular devia-
tion if equipped with an IMU mounted 
on its outward-pointing foot. 

Because we assume that the additive 
noise components are white, they do not 
form a part of the error state of the IMU. 
We do, however, model the “duck angle” 
as well as the odometry heading drift as 
random walk processes and they are for-
mally encoded in the state variable Ek. 
Hereby we allow the IMU heading drift 
to be unbounded but restrict the ”duck 
angle” random walk process to ±20 
degrees (essentially limited by human 
physiology).

Map Representation in 
Practice
As discussed earlier, in our model the 
map is a probabilistic representation of 
possible human motion based on the 
subject’s location in a certain part of a 
building. It can be interpreted in this 
way: a person’s next step will be deter-
mined only by his or her current loca-
tion in the sense that each future step is 
drawn from a location-dependent prob-
ability distribution. This corresponds to 
the fictive pedestrian behavior in which 
a person looks at a probability distribu-
tion posted at each location, and “draws” 
the next step using exactly this govern-
ing distribution.

As mentioned previously, we resort 
to a Rao-Blackwellized particle filter 
(RBPF) that follows a FastSLAM par-
titioning in which each particle rep-
resents the pedestrian’s location track 
and a probabilistic representation of 
possible motion for each location in a 
two-dimensional space. This means that 
we are representing human motion as a 
first-order Markov process: the next step 
taken by the pedestrian is solely a proba-

bilistic function of the current location.
In order to compute and store the 

probability distribution of human 
motion as a function of location we have 
chosen to partition the space (restricted 
so far to two dimensions) into a regular 
grid of adjacent and uniform hexagons 
of a given radius (e.g., 0.5 meters, see 
Figure 7). 

Every particle holds (conditional) 
estimates of the transition probabilities 
across the edges of all visited hexagons 
and updates these based on the motion 
taken by the particle hypothesis. We 
assume a uniform prior in our Bayes-
ian estimation of these probability dis-
tributions and will return to this point 
in later discussion. Furthermore, a par-
ticle explores possible deviations of the 
true pedestrian’s path as a result of the 
sequence of the IMU errors E0:k (refer to 
Figure 8). 

When we use a large number of par-
ticles (Np) in the particle filter, we are 
exploring a very large space of possible 
IMU errors and at least one of them will 
usually be very close to the true IMU 
error sequence. The larger we make Np 

Navigation frame
coordinate system

Pose change (step)
in person zero 
heading coordinate
system

  Person      walked,
facing      to then
facing

x

y

FIGURE 6  Representation of the important coordinate systems and step vectors (pose change) and 
angular errors used in our system model.
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the more reliable FootSLAM becomes.
A particle’s weight is updated accord-

ing to the previously estimated knowl-
edge of the state transitions for the 
outgoing edges of the hexagon it is cur-

rently occupying. 
As a result, particles 
will be “rewarded” 
(given additional 
weight) by revisiting 
similar transitions 
in space.

Let us now spec-
ify the probabilistic 
map formally, based 
on transitions across 
the hexagon grid. 
We assume a two-
dimensional posi-
tion domain and 
populate space with 
adjacent hexagons 
of radius r. We can 
restrict this space 
to the region visited 
by any particle and 
define H = {H0,H1, · 
· · , Hh, · · · , HNH−1

} as 
the set of NH hexa-

gons, where the index h uniquely refer-
ences a hexagon’s position. Furthermore, 
we define Mh =   as the 
set of transition probabilities across the 
edges of the h-th hexagon and

Here, j ≠ h — that is, we moved to a 
new hexagon, where 0 ≤ e(Uk) ≤ 5 is the 
edge of the outgoing hexagon associated 
with Uk, i.e., the edge of the hexagon in 
which Pk−1 lies and that borders the hexa-
gon in which Pk lies. (See Figure 9.)

Also, we can state that  = 1. 
When  is written in boldface we are 
denoting a random variable. We thereby 
introduce the notion that , a probabil-
ity, is unknown to us. We only have esti-
mates of p( |P0:k−1) that are the result of 
observations of the sequence of positions 
up to step k. 

Our map random variable M is 
defined as the set:

where Mh is a random variable vector of 
length 6 denoting the transition prob-
abilities of the hexagon with index h. In 
the following we will write  for outgo-
ing hexagon h(Pk−1), and  for the crossed 
edge e(Uk) for brevity.

Learning the transition map on a 
particle-by-particle basis is very easy 
and is based on Bayesian inference of 
multinomial and binomial distributions. 
Each time a specific particle with index 
i makes a transition Pk−1

i → Pk
i across 

hexagon edge  we count this transition 
in the local map of hexagon H  for par-
ticle i. 

Summary of the RBPF 
Algorithm
We can take good advantage of a Like-
lihood Particle Filter as is described in 
the article by S. Arulampalam et alia  
because the step measurement  is 

Edge   e(Uk)

Hj

Hh

FIGURE 9  Definition of the hexagon transition 
 in Equation (3)

FIGURE 8  Processing chain from step estimates at the lower filtering level up to the stage where 
particles are drawn from the proposal density Equation (5). Drawing the two odometry error state 
angles from their corresponding random walk processes corresponds to drawing  from  
Drawing the two white noise processes for  and , and then applying the new angles stored in 
state , results in drawing the new step vector  from  - as defined within the person 
zero-heading coordinates.

FIGURE 7  2D hexagon representation for stochastic pedestrian movement 
used in this article. We represent the six probabilities for crossing each 
of the hexagons in a regular grid with adjacent hexagons.

slam dance
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very accurate. Weighting with a “sharp” 
likelihood function  would 
cause most particles outside the mea-
surement to receive very low weight and 
effectively be wasted. Thus, we sample 
using the likelihood function rather 
than sampling from the state transition 
model. 

Specifically, we have chosen the pro-
posal density of the particle filter to be

We will discuss the practical issues 
involved in a real implementation of our 
RBPF algorithm in a moment, but first 
we will describe its general operation:
1. 	 Initialize all Np particles to P0

i 
=(x=0,y=0,h=0) where x, y, h denote 
the pose location and heading in two 
dimensions; draw E0

i from a suit-
able initial distribution for the error 
states.

2. 	 For each time step increment k:
	 (a) Given the latest step measurement 

, particles with index i are drawn 
from the proposal density p(Ek|Ek−1

i)· 
p(Uk| ,Ek

i) (see Figure 8).
	 (b) The pose Pk

i is computed by add-
ing the vector Uk

i to Pk-1
i; also updat-

ing the heading of the pedestrian 
according to Uk

i.
	 (c) The particle weight updates are 

simply
       

	 where the counts are those that are 
computed up to step k−1: The term 

 is the number of times particle i 
crossed the transition;  is the sum 
of the counts over all edges of the 
hexagon in this particle’s map coun-
ters. The terms  and  
are the priors of this map segment. 
(In our experiments we chose  =0.8 
for all edges and hexagons.)

	 (d) Particle weights are normalized 
to sum to unity.

	 (e) Recompute { }i for the transi-
tion from  s.t. Pk−1

i  , and the 
transition  corresponds to the step 
ending at Pk

i. The counts are kept 
for each particle and hence store the 
entire history of that particle’s path 

through the hexagon grid. They are 
used in Equation (6) the next time 

 is visited by this particle.
	 f) Resampling can be performed if 

required.
A number of implementation issues 

need to be addressed in order for the 
algorithm to work in practice. First 
of all, when computing the counts for 
each particle, we in fact assume that 
observing a certain transition from an 
outgoing hexagon to an incoming one 
allows us to increment the counts for 
the outgoing as well as the incoming 
hexagon (on the appropriate edge). This 
is the same as assuming that a person 
is equally likely to walk in either direc-
tion and that we should not waste this 
information.

Next, we have assumed so far that an 
increment of the time index k is asso-
ciated with a step that leads from one 
hexagon to an adjacent one. In reality a 
step might keep us in the hexagon or it 
might lead us over several hexagons. 

To address this we simply perform 
a weight update only when we have 
stepped out of the last hexagon and apply 
multiple products in the weight update 
(6) for all edges crossed if the step was 

a larger one. Similarly, we update the 
counts of all edges crossed between Pk−1

i 

and Pk
i.

We also incorporated a small correc-
tion term in the weight update equation 
(6) (raising it to a power depending on 
the step vector angle within the hexagon 
grid) in order to account for the fact that 
straight tracks with different angles tra-
versing the grid will each yield a slightly 
different total number of hexagon edge 
transitions per distance traveled. (Oth-
erwise, particles with some directions 
would be slightly favored.)

Experiments and Data 
Processing 
Our results based on real data are very 
promising. In several runs lasting up to 
about 12 minutes each, we collected the 
data of a sensor-equipped pedestrian 
walking in office environments as well 
as in the adjacent area outside. 

We first present the quantitative 
results for the important scenario out-
doors-indoors-outdoors (Figures 10, 
11, 12, and 13). This represents the case 
where a person uses GPS outdoors and 
enters a building and leaves it again at 
some point. 

FIGURE 10  Result of FootSLAM processing for an outdoor-indoor-outdoor walk. Top left: raw odom-
etry, where we see how the starting and finishing point are far apart (in reality, they were very 
close together). Right: resulting FootSLAM map at the end of the processing run through the entire 
data set. Bottom left: particle cloud (note: smaller scale compared to the map window shown on 
right). In this experiment we assumed that we knew the location of the building’s outer walls but 
not the entrance doors or the interior layout.
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There are two main applications for 
this: The true SLAM scenario where we 
wish to locate the user in real time while 
they are walking, and the map-building 
scenario where maps are used later by 
other people. 

The recorded sensor data is collected 
during the walk and is then processed 
offline in our RBPF implementation. In 
our visualizations, the location estimate 
(RBPF 2D particle cloud) and the cur-
rent maximum a posteriori estimate of 
the probabilistic hexagon map are dis-
played during the processing of the data 
— as well as the raw step calculation of 
the lower level EKF (see, for example, 
Figure 10). 

This allows interpretation and expla-
nation of important effects, such as the 
evolving map hypotheses. A collec-
tion of our data processing runs were 
recorded as video and are available on 
the Internet at <http://www.kn-s.dlr.
de/indoornav>. 

In Figure 10 and Figure 11 we show 
qualitative results for the cases where 
we, respectively, assumed and did 
not assume a rough knowledge of the 
building outline. In Figure 12 we show 
the positioning error during the walk in 
comparison to other approaches. 

Note that unaided FootSLAM, as 
with other forms of SLAM, is rotation- 
and translation-invariant, because there 
is no absolute position or orientation ref-
erence. When combined with GNSS, for 
instance, the invariance and the result-
ing ambiguity is much reduced because 
we are using an additional anchor in the 
position domain, at least for a part of the 
time. 

In our example with the outdoors-
indoors-outdoors scenario we have a 
residual translation ambiguity of the 
map that is in the order of the GNSS 
accuracy. Sometimes a residual rota-
tion ambiguity also appears because we 
have only anchored our building map 
to the GNSS location on one side — the 
entrance. 

This does not create a problem for 
a relative localization using this map 
(such as finding an office) and can be 
improved with knowledge of the outer 
walls. Future work will focus on merg-

ing maps from many users; because the 
errors from each run are essentially 
uncorrelated, we expect these kinds of 
influences to be averaged out.

We have also processed the three-
dimensional data from the outdoor-
indoor-outdoor walk portrayed in the 
previously mentioned online video (data 

set “March09Measurement03”) and dis-
cussed in the article by M. Angermann 
et alia.

Assuming that this had been a two-
dimensional measurement, no major 
degradation occurs as the f loor plan 
corridors are more or less identical/com-
patible at different levels of the building. 

FIGURE 12  Position error of FootSLAM processing for the outdoor-indoor-outdoor walk of Figures 
10 and 11 compared with particle filter using complete building plan information and a simple EKF 
using no such information. The FootSLAM results were averaged over three RBPF runs over the data 
set with 55,000 particles each. The EKF and PF curves are for a single run.
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FIGURE 11  Result of FootSLAM processing for an outdoor-indoor-outdoor walk. Bottom left: raw 
odometry. Right: resulting FootSLAM map. Top left: particle cloud (note: smaller scale compared 
to the map window shown on right). In this experiment we did not assume that we knew the 
building’s outer walls. Observe how two main hypotheses for maps survive. This is to be expected 
given the rotation-invariant nature of SLAM.
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Obviously we ignored the altimeter data 
but included the magnetometer. The 
results are shown in Figure 13.

Results In order to evaluate the first 
case we measured the position accuracy 
over time, during the entire walk. To 
validate the second application, we show 
qualitatively the resulting map, created 
using all the data up to the end of the walk 
(that is, when we are outdoors again).

In a subset of our evaluations we 
assumed that we knew a priori the loca-
tion of the outside building walls to with-
in three meters of the true wall locations. 
This helps the FootSLAM to converge a 
little, but it is not a requirement. 

It is realistic, however, for somebody 
mapping a new region to roughly mark 
the outer corners of the target building 
manually using an online satellite image 

service, for instance. The resulting coor-
dinates can then be used to construct a 
simple polygon as prior map information 
by the particle filter. The resulting coor-
dinates can be incorporated to construct 
a simple polygon as prior map informa-
tion to be used by the particle filter. 

In the work presented in figures 10–
13, the pedestrian walked from a point 
outside the building, through the front 
door of the office, and round the corri-
dor of the ground floor. 

During the first walk round, the 
pedestrian entered and then left a num-
ber of rooms and then continued to walk 
the corridor to the next room. This pat-
tern was repeated two more times, at 
which point the pedestrian exited the 
building by the same door. 

Figure 14 shows results from an 
indoor-only experiment. Blue hexagons 
are those that are covered by the map 
of the best particle. The white and light 
grey areas to be seen within hexagons 
and connecting hexagons encode the 
frequency with which these were tra-
versed. In this way we can easily recog-
nize the main paths, just as we would 
see from an aerial view a heavily trodden 
path across grass. 

We used 6,000 particles to process 
data from a run of about 12 minutes 
duration. The walk consisted of explor-
ing a meeting room with a large table, a 
long corridor, and a canteen. Note that 
this experiment has no direct large loop 
closure, but FootSLAM also converges 
when the user revisits areas by back-
tracking without closing a large loop. 
Also note how the algorithm learned 
the location of the table to within about 
1–1.5 meters — essentially limited by the 
natural feature dimension in the build-
ing and the discretization error due to 
the finite hexagon radius. 

Discussion and Further Work
The true layout of the building was, of 
course, not used in the processing and 
only manually inserted over the result-
ing FootSLAM maps for comparison 
— applying rotation, scaling, and trans-
lation chosen to match each FootSLAM 
map. The results of the outdoor-indoor-
outdoor and indoors-only trials showed 

FIGURE 13  Position error of FootSLAM processing for the outdoor-indoor-outdoor walk of [10] [11]. 
Comparison with particle filter using complete building plan information and a simple EKF using no 
such information. Note: FootSLAM assumes this as being two-dimensional which in this originally 
3D data set causes no major degradation as the floor plan corridors are more or less identical/com-
patible at different levels. The FootSLAM results are a single RBPF run each, with 35000 particles. 
The EKF and PF curves are also for a single run.
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FIGURE 14  A further result of an indoor-only experiment in a different location. The map was gener-
ated using 6,000 particles to process 12 minutes of data in faster than real-time on a standard 
personal computer using a Java implementation.
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a remarkable ability of the RBPF to esti-
mate the reachable areas. Errors of the 
location of the doors were usually to 
within about one meter and never more 
than about two to three meters off. 

All results so far were obtained from 
just a single track or walk-through and 
assume no further processing to merge 
tracks. In a real system, efforts must be 
undertaken to resolve the scale, rotation, 
and translation ambiguities and errors 
that are often inherent in SLAM. 

In our approach (where we couple 
with GPS in the outdoor portion and 
optionally a magnetometer), these ambi-
guities may not be so pronounced and 
may be locally confined to the build-
ing indoor areas. Future work should 
address techniques that combine maps 
from different sources, such as different 
runs from the same person or runs from 
different people. We believe that after a 
few runs the ambiguities will be aver-
aged out. 

Furthermore, the partial availabil-
ity of GNSS indoors — even with large 
errors at any one time — will over time 
help to eliminate the ambiguities even 
further. In both cases the user generat-
ed approach will over time improve the 
quality of the maps and will also adjust 
to changes in the building layout. 

Inspecting the numerical results, we 
can make the following observations:
• 	 Observing the particle cloud during 

processing and also the evolution of 
the position error, it becomes evi-
dent that the estimator diverges at 
first as the area is being explored, 
but then begins to converge (at loop 
closure) closer to the true location 
and remains reasonably stable. The 
cloud naturally spreads as new areas 
of the building are being explored for 
the first time, only to converge again 
as the pedestrian revisits familiar 
ground.

• 	 The numerical results indicate 
that the use of rough knowledge of 
the outer building walls (building 
perimeter) help to improve the error 
slightly.

• 	 The use of perfect building plan 
information — not surprisingly 
— gives the best performance. This 

is because the location of the walls 
is known with submeter accuracy. 
The result is that indoor positioning 
accuracy is usually better than out-
doors.

• 	 When FootSLAM is used, the 
accuracy cannot be better than the 
anchor achieved while using GPS 
before entering the building. This 
error in our experiments was typi-
cally around three to seven meters; 
so, this is a baseline error onto which 
the FootSLAM relative errors are 
essentially added.

• 	 The extended Kalman filter that does 
not use FootSLAM diverged after 
some time, especially in the second 
data set. (Divergence is a random 
process and depends on the random 
occurrence of drifts and angular dis-
placement of the stride estimation at 
the lower level and is a function of 
the IMU errors).
Because our maps are probabilis-

tic, we could also estimate pedestrians’ 
future paths — similar to work for driver 
intent estimation described in the paper 
by J. Krumm (Additional Resources). 
Further work should also integrate more 
sensors, address 3D issues, as well as col-
lective mapping in which users collect 
data during their daily lives and maps 
are combined and improved.

Current work is addressing Place-
SLAM: the use of manually indicated 
markers, which are recognizable places 
that are flagged by the user each time she 
comes to this place to further aid conver-
gence. Finally, it is important to point to 
new developments in sensor technology 
that are achieving substantial improve-
ments to performance. (See, for example, 
the article by E. Foxlin and S. Wan in 
Additional Resources.) 

This new work on sensors is impor-
tant for FootSLAM. First, the more 
accurate sensors will allow larger areas 
to be mapped by FootSLAM for any 
given number of particles in the algo-
rithm; so, a better sensor will allow low 
complexity implementation. Second, a 
better sensor will make it more likely 
that the odometry error will be small 
before the first FootSLAM loop closure 
or backtrack, meaning that real-time 

FootSLAM without any form of prior 
map will be even more viable.
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