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   GNSS 
Solutions: 

What are the 
differences between 
least-squares and 
Kalman filtering?

M ost, if not all, GNSS receivers 
compute their positions 
using Kalman filtering (more 
common) or least-squares 

(less common) estimation algorithms 
(“estimators”). Kalman filtering also 
finds application in a wide variety 
of integrated navigation systems 
(e.g., GNSS integrated with inertial 
navigation systems). However, the 
role of each of these estimators is not 
always well understood, especially for 
people new to the navigation and/or 
estimation field. 

To fully explain their differences is 
both simple and complex, depending 
on the approach taken. Here, we 
consider the simpler option because of 
limited space and because the simpler 
explanation arguably offers more 
practical insight. Of course, the simple 
answer is not mathematically rigorous, 
and those interested in such rigor are 
encouraged to flush out the details 
provided in the myriad of textbooks 
available on the subject. 

So, with this in mind, the 
differences between least-squares and 
Kalman are surprisingly minor. This is 
unintuitive, given the derivation of the 
different algorithms; least-squares is 
based on minimizing the measurement 
residuals (i.e., the difference 
between the actual and predicted 
measurements) whereas the Kalman 
filter is derived based on minimizing 
the mean-square error of the solution. 
Nevertheless, this will be borne out in 
subsequent discussion.

Mathematical Overview
Least-squares and Kalman filtering 
employ the following measurement 
model:

where  is the vector of measurements 
(e.g., GNSS pseudoranges),  is the state 
vector containing the parameters to 
be estimated (e.g., position, velocity 
and time),  relates the measure-
ments to the states, and  is the vector 
of measurement errors. For generality, 
we assume that  is non-linear such 
that the following linearlization can be 
applied

where  is the current estimate of the 
state vector,  is an error in the follow-
ing term, and H is the Jacobian of the 
measurement model. Based on equa-
tion (2), the least-squares solution for 
the error in  — which is then applied 
to the original state vector to correct it 
to  — is given by

where R is the covariance matrix of the 
measurement errors, . If, in addition 
to the information contained in the 
measurements, some a priori informa-
tion about the state is also available, 
equation (3) can be changed to 

where P0 is the covariance matrix 
reflecting the uncertainty of the a 
priori state information. Of course, 
equation (4) degenerates to equation (3) 
as the uncertainty in the a priori state 
information increases (i.e., as P0 tends 
to infinity).  Finally, the covariance 
matrix of the estimated parameters, P, 
is given by
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Collectively, equations (4) and (5) 
represent the least-squares solution. 
Note that, in general, the non-linear 
least-squares solution is iterated until 
the corrections are sufficiently small. 
However, if the initial estimate of the 
state vector is sufficiently accurate, this 
is not necessary.

In contrast to least-squares, Kalman 
filtering always assumes some a priori
knowledge of the state, usually obtained 
from some past estimates (more on this 
later). With this in mind, the update 
equation is usually written as

where subscript k represents the k-th 
epoch, the subscript k|k –1 is the 
estimate at the k-th epoch based on 
measurements up to epoch k–1 (i.e., 
the a priori information), and K is the 
Kalman gain matrix which effectively 
weights the information in the obser-
vations against the a priori knowledge 
of the states. It is precisely this weight-
ing that “filters” the measurements in 
order to yield a better solution. 

The covariance matrix of the 
state vector after incorporating the 
measurements is given by

where subscript k|k denotes the esti-
mate at the k-th epoch based on mea-
surements up to epoch k.

At face value, the two preceding 
equations show no obvious 
resemblance to those for least-squares. 
However, we can show that the Kalman 
filter equations can be re-written as

These newer equations are the 
exact parallels of equations (4) and (5) 
with only a change in notation for the 
subscripts of P. In other words, given 
a set of measurements, least-squares 
and Kalman filtering incorporate the 
information from the measurements in 

the same manner and will generate the 
exact same answer. 

So Why Use a Kalman Filter?
As shown previously, the key difference 
between least-squares and Kalman 
filtering has nothing to do with how 
measurements are processed. Rather, 
it has to do with how the two estima-
tors obtain their a priori information. 
Whereas least-squares usually obtains 
this information from external means 
(e.g., by occupying a known point), 
Kalman filtering predicts the a priori
information using the most recent esti-
mate of the state vector. 

This predicted state vector is based 
on some assumed model for how the 
state vector changes/evolves in time; 
this is usually called the system model. 
This is expressed as

where  is the transition matrix 
that propagates the state at epoch k 
to epoch k+1. The transition matrix is 
usually based on the physics of the sys-
tems (e.g., velocity multiplied by time 
gives change in position). Although 
not discussed here, the discrete-time 
formula in equation (10) is often — 
though not always (refer to the Sep-
tember 2010 issue of this column by Lo 
Presti et alia for an example) — derived 
from a continuous-time state space 
model. 

The covariance matrix of the 
predicted state is given by

where Q is the process noise matrix 
that ultimately accounts for the uncer-
tainty/errors in the assumptions used 
to derive the transition matrix. 

To illustrate, let’s consider a one-
dimensional example of trying to 
position a train. We define our states to 
be the position, p, and velocity, v, of the 
train, namely

Since trains are large and heavy, 
they do not accelerate or decelerate 

very quickly; so, we can assume that 
the train is moving with approximately 
constant velocity. The transition matrix 
can thus be written as

where Δt is the time between epochs 
k and k+1. Substituting this term into 
the first term on the right hand side of 
equation (11) propagates the uncertain-
ty of the states forward in time. This 
is necessary because, if the states are 
not known perfectly at some time in 
the past, it follows that the prediction 
of those states will introduce larger 
uncertainties. 

To determine Q, we need to 
revisit our assumption that the train 
is moving with constant velocity. 
Although this may be a reasonable 
approximation over short time periods, 
it is not always true (i.e., the train will 
eventually stop). This means that, in 
addition to the propagation of the 
errors from the previous epoch, we 
also need to add some uncertainty to 
describe the fact that our assumption is 
not perfect. 

For the case at hand, the 
uncertainty may be small, precisely 
because the train’s momentum is so 
high. However, if we were positioning 
race cars instead of trains, the value 
of Q would have to be larger to 
accommodate the fact that the race 
car can change its speed much more 
quickly. 

Although the objective of this 
article is not to give a detailed 
description of how to select Q 
(this is often covered in several 
chapters of textbooks and even 
then requires practical experience 
to fully appreciate), the key point 
is that selecting Q directly affects 
the performance of the filter. In 
the extreme, if Q is zero, the filter 
essentially averages information 
over time, that is, the filter becomes 
a cumulative averaging algorithm. 
Conversely, if Q is selected to be 
infinite,  in equations (8) and 
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(9) becomes zero and the Kalman 
filter degenerates to the least-squares 
solution in equation (3).

So, the real benefit of a Kalman 
filter relative to least-squares is that 
it provides additional information 
to the system based on assumed 
knowledge of how the states (e.g., 
position, velocity, etc.) change with 
time. If the assumptions regarding 
the evolution of the states are correct 
and/or if deviations from the assumed 
behaviour can be accommodated 
through some form of adaptation, the 
Kalman filter will typically provide 
temporally smoother and more 
accurate solutions.

Two other benefits are also realized 
by Kalman filters, relative to least-
squares. First, if the uncertainty in 
the a priori estimate is not infinite, 
we can update the state vector using 
fewer measurements than there 
are states. For example, for GNSS 
positioning, we can update a Kalman 
filter using pseudoranges from one or 
two satellites, whereas a least-squares 
update in this case would be impossible 
because of insufficient measurements 
(assuming no a priori information 
is available, which is likely for least-
squares except in specific cases such as 
static positioning).

Second, we can estimate parameters 
in a Kalman filter that may not be com-
pletely observable using least-squares. 
A good example of this is the ability 
to use GNSS pseudoranges to estimate 
position and velocity in a Kalman 
filter, whereas least-squares could only 
estimate position using the same data. 
Intuitively, this is possible in a Kalman 
filter because successive position 
estimates can be used to infer velocity.

No Silver Bullets
Despite the potential benefits of Kal-
man filtering, we need to exercise 
caution before blindly applying the 
algorithm in all scenarios. The reason 
is that if the assumed behaviour of the 
states is incorrect, the filter will still 
try to make the results fit the assumed 
behavior anyway — after all, that is 

what we are instructing it to do! This 
“self-fulfilling prophecy” behavior can 
mask certain effects (both good and 
bad) and potentially degrade perfor-
mance. 

A good example of this is in urban 
canyons where, if a receiver can only 
track two satellites, the Kalman filter 
will usually predict forward motion. 
However, if the receiver turns a corner, 
it may take several seconds (or longer) 
for the filter to identify this condition 
resulting in an “over shoot” of the 
trajectory at the corner.

By extension, computing a least-
squares estimate at every epoch 
— although much noisier and less 
accurate — does have the benefit of 
providing insight into the “raw” data 
quality, that is, in the absence of any 
filtering. Often, this information can 
then be used to better determine the 
parameters for a suitable Kalman filter.

Summary
In this article we showed how least-
squares and Kalman filtering estima-
tors handle measurements the same 
way and that the main difference 
between them is that Kalman filters 
provide information about how the 
states change with time. This addition-
al information, if correct, will indeed 
improve estimation accuracy. 

Nevertheless, an epoch-by-epoch 
least-squares solution still has an 
important role in assessing the raw 
quality of the data that is not usually 
possible using a Kalman filter. 
Depending on the application, one or 
both approaches may prove useful, or 
even complementary. 
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