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   GNSS 
Solutions: 

What is the acquisition ambiguity function 
and how is it expressed mathematically?

One of the main tasks of a GNSS receiver is the acquisition of the signals-
in-space (SISs) of all the satellites in view. This operation is based on the 
evaluation of a 2-D correlation function, called the ambiguity function 
(AF), which allows both the satellite detection and estimation of the 

received signal parameters, namely the code phase offset (code offset) and Doppler 
frequency/shift. 

The AF is evaluated for each PRN code across all possible combinations of local 
code offset  and Doppler shift . This concept was well described in Michael 
Braasch’s “GNSS Solutions” contribution in the March-April 2007 issue of Inside 
GNSS. 

In order to decide on the presence or absence of the searched satellite, the 
maximum absolute value of the resulting AF is then compared with a predefined 
threshold. In fact, if the PRN code sought is present in the SIS the AF exhibits a 
well-defined peak, as shown in Figure 1. 

The AF is generally evaluated in the digital section of the receiver using the fol-
lowing expression: 

where yIF(nTs) is the sequence of samples of the analog signal yIF(t) at the front-end 
output, Ts is the sampling interval (the inverse of the sampling frequency of the 
analog-to-digital converter), ci(t) is the PRN code of the i-th satellite we are seeking, 

 is the local code offset,  is the local Doppler shift, L is the number of samples 
contained in the so called integration time Td(Td = LTs), and fIF is the intermediate 
frequency (IF) of the carrier.

The math of 
ambiguity
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FIGURE 1  Sample of absolute value of AF in absence of noise for the L1 GPS C/A code signal
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In the absence of noise the signal yIF(t) can be written as 

where 
N is the number of satellites in view
Am is the amplitude (> 0) of the m-th satellite signal
dm(t) is the data signal of the m-th satellite
cm(t) is the code of the m-th satellite
τm is the code offset of the m-th satellite
fd,m is the Doppler frequency of the m-th satellite signal
ϕm is the phase of the m-th satellite signal.

A closed-form expression that approximates the AF in the absence of noise is 
often given as

where the subscript i denotes the satellite sought, , ,  
is the normalized autocorrelation function of the PRN code ci(t), and Sinc(x) = 
sin(πx)/πx).

At this point a number of questions arise. What is the validity region of this 
approximation in the plane (∆τ,∆f)? Is it possible to have a closed-form expression 
valid in the whole plane (∆τ,∆f)? It is possible to obtain a similar formula for the 
cross-correlation terms?

Why do we ask these questions? The fact is that new scenarios with new applica-
tions are appearing every day within the satellite navigation world. Most of these 
require very demanding receiver performance (for example, the capability of deal-
ing with degraded scenarios, indoor navigation, and so forth) and new block pro-
cessing techniques. 

In some cases we can approach the study of these new scenarios with a variety 
of theoretical tools, and the results can eventually be validated by simulation or 
by real-life experiments. In these cases to have a closed-form expression of the AF, 
together with its quality of approximation, would greatly help the study — and thus 
solution — of the problem.

AF formula for  and 
In (1) the signal yIF(t) gives rise to two contributions, which allows us to write the 
AF in the form 

where  is a term arising from the autocorrelation between the code of the 
SIS of the i-th satellite and the local code ci(t), while , for m ≠ i, are cross-
correlation terms. 

Ignoring the data signal (equivalent to integrating within a single navigation 
data bit), we will now show that the expression in (3) is obtained by approximating 
the term  evaluated in the continuous-time domain, that is with the inte-
gral 

evaluated over one code period duration (e.g., with an integration time of one mil-
lisecond for the GPS C/A code). 

The integral is an adequate approximation of the real operation performed by 
the acquisition systems, that is, the summation in (1). In the case where ∆τ = 0, the 
local code is perfectly aligned with the incoming code and . 

GNSS SOLUTIONS
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By writing the cosine function using the Euler formula (i.e., cos α = 0.5(e jα + 
e-jα)), the product with the local signal contains two sinusoidal terms: one with a 
frequency of the order of 2 fIF , and the other near baseband:

The integration of the term at 2 fIF gives a value which is approximately zero 
because the average value of a sinusoid is zero. Thus we can write 

Similarly, if ∆f  0, and we neglect again the double frequency contribution, 
Equation (5) becomes 

For ∆τ  0 and ∆f  0, Equations (6) and (7) can be written in the compact ver-
sion of Equation (3). This means that the validity region of the approximation in 
(3) is represented only by the code phase and Doppler shift passing through the 
AF peak. In this region the approximation is quite good and degrades only in the 
points where the values given by (3) are of the same order of the terms at the inte-
grate double frequency.

Figure 2 and Figure 3 compare the AF values obtained by applying (1), for  
and  respectively, with the values given by the mathematical formulas (6) 
and (7). The relative errors are also represented. 

One can easily observe that, within the AF main peak, the approximation error 
is negligible, while the relative error becomes about 100 percent at the null points.

Moreover, we can observe that for small values of ∆τ (that is, ∆τ > 1 chip dura-
tion) Equation (3) also gives a good approximation of the AF, as shown in Figure 4. 

In contrast, moving farther away from the main peak (i.e., arbitrary values of  
and ) invalidates the approximation. To illustrate, Figure 5 presents the compari-
son between the AF and the mathematical formula given by Equation (3) for an 
arbitrary value of ∆τ, i.e., ∆τ > 1 chip duration, namely ∆τ = 50.770μs.

In the next section we will see that a more general formula can be written for 
the AF, from which (6) and (7) can be derived.

AF formula for arbitrary values of  and 
We show now that the generic term  in (4) can also be written in terms of 
Sinc functions. Starting from the expression 

we observe that the function , for t(-∞, ∞), is a periodic 
function with period Tp equal to the code period, and that Td is generally equal to 
KTp, with K integer.  

For example, with the GPS C/A code, K = 20 is a possible choice if you inte-
grated over an entire 20 millisecond data bit period. At this point, neglecting the 2 
fIF components, and introducing the generic boxcar function 

the term  can be written as 

GNSS SOLUTIONS
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The second integral has the structure of a Fourier integral, from which 

where F{•} denotes the Fourier transform, the symbol * convolution, and 
. The Fourier transform of bi,m(t) is a line spectrum which 

can be written in terms of the Fourier transform of bi,m(t) taken in the main interval 
|t|<Tp/2. 

As we know, the line spectrum of a periodic signal can be given in terms of 
the Fourier Transform of the waveform in its fundamental period (−Tp/2,Tp/2), 
which can be written as . Therefore, by introducing the function 

, we obtain 
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FIGURE 2  Comparison between the AF and its mathematical approxima-
tion, given by Equation (6), for  (upper curve). Relative error (lower 
curve)
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FIGURE 3  Comparison between the AF and its mathematical approxima-
tion, given by Eq. (7), for  (upper curve); relative error (lower 
curve)
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FIGURE 4  Comparison between the AF and its mathematical approximation 
for small value of ∆τ, i.e., ∆τ < 1 chip duration (upper curve). Relative 
error (lower curve)
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FIGURE 5  Comparison between the AF and its mathematical approximation 
for a generic value of , i.e., ∆τ, i.e., ∆τ > 1 chip duration (upper curve); 
relative error (lower curve)
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By evaluating the following convolution product 

it is possible to obtain 

In the case, when ∆τ = 0 and i = m, bi,m(t), becomes , then 
only the spectral line for k = 0 survives in (13). By integrating over the period Tp we 
find 

 
.
 

Substituting this result into (13), gives 

which coincides with (6). In the case where ∆f = 0, the Sinc function in Eq. (15) 
becomes Sinc(kTd /Tp). 

Since Tp = KTp and K is an integer, the Sinc function is always equal to zero, 
except for k = 0, in which case 

where  is a normalized cross correlation term. Eq. (15) coincides with (7) 
when i = m.

In conclusion, we can write the AF function given by (8) in the form 

At this point it is evident that the approximation in (3) is valid in the region of 
the main peak. In the other points of the search space where the theoretical values 
are of the same order as the integrated double frequency terms or of the cross terms 
present in (16), the relative errors become unacceptable. 

Finally, from (13) and (16) it appears that the effect of the cross terms is espe-
cially concentrated in the points  where the Sinc functions exhibit their maxima. 
With an intelligent and careful design of the codes, working on the cross-spectral 
lines ∆f = k/Tp, this effect can be mitigated.
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