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Four global navigation satellite 
systems are scheduled to be fully 
operational orbiting Earth in the 

coming years: the NAVSTAR Global 
Positioning System (GPS) from the Unit-
ed States, the GLObal NAvigation Sat-
ellite System (GLONASS) from Russia, 
the Compass/BeiDou-2 System (BDS) 
from China, and Galileo from Europe. 
A considerably high number of signals, 
coming from the satellites of those con-
stellations, will share the radio electric 
spectrum. 

Moreover, some aeronautical radio 
navigation systems (ARNS) operate 
in the E5 Galileo band. For example, 
distance measuring equipment (DME) 
and tactical air navigation (TACAN) 
systems (both in the ARNS category) 
broadcast strong pulsed ranging signals 
that interfere with Galileo E5a and GPS 

L5 signals. As analyzed in the work by F. 
Bastide et alia, listed in the Additional 
Resources section near the end of this 
article, DME/TACAN interferences 
can severely degrade the receiver per-
formance if left unmitigated.

Galileo receiver simulators are a pow-
erful way to investigate the initial per-
formance of Galileo receivers without 
the need of heavy measurement cam-
paigns. Applications of open-source 
Galileo simulators, especially regarding 
the E5 band, are still hard to find in the 
current literature. This article presents 
the development of an open-source 
64-bit Galileo simulator, including the 
acquisition and tracking parts and the 
interference mitigation blocks for con-
tinuous wave interference (CWI) and 
DME. The simulator is available on 
demand and upon agreeing to its open-
source conditions (Details listed in the 
Manufacturers section at the end of this 
article).

This article thoroughly analyzes 
three narrowband interference mitiga-
tion methods explained in the next sec-
tions (notch filtering, zeroing, and pulse 
blanking) with Galileo E5a signals based 
on the open-source simulator created in 
our group (Signal Processing for wireless 
positioning group at Tampere University 
of Technology). The performance studies 
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are done with both the benchmark CWI and the DME inter-
ferences. 

The novelty of our work comes from analyzing jointly these 
three techniques with a practical Galileo simulator and from 
selecting the best method according to the interference type. 
We show that zeroing methods are best used for robustness and 
with strong narrowband CWI while pulse blanking methods 
are better than notch filtering methods for strong DME inter-
ferers. We also show that interferers with up to 10–15 decibels 
stronger power than the E5a signal power can be tolerated rela-
tively well and that all considered approaches have relatively 
similar performance for medium strength interferers.

GNSS Interferences
Very simply put, GNSS interference can be defined as any sig-
nal, from any service, working in the same frequency as the 
satellite receiver. Wideband interference refers to interference 
with bandwidth comparable to or higher than the GNSS signal 
bandwidth, e.g., ultra-wideband (UWB) technology that trans-
mits a huge amount of information with a very low power using 
a large bandwidth, inter-system interferences between satellites 
from different GNSSs, or intra-system interferences between 
satellites from the same GNSS (here Galileo). The spectrum is 
becoming overwhelmed by all the satellite systems deployed. 

Some interference can be mitigated well using time or fre-
quency processing methods. However, when dealing with wide-
band interference, the performance of these methods degrades, 
and additional processing has to be carried out, such as space-
based processing methods (i.e., antenna array–based methods). 
Minimum variance distortionless response (MVDR) and mini-
mum power distortionless response (MPDR) beamformers are 
some examples. 

These spatial approaches are not assessed in this article, 
however, and we focused our research on narrowband interfer-
ence — those whose bandwidth is much lower than the band-
width of the GNSS signal of interest. Narrowband interference 
can be created, for example, by TV harmonics, inter-modula-
tion products or signals from very high frequency (VHF) and 
ultra high frequency (UHF) stations, or signals generated by 
systems such as DME or TACAN. Figure 1 illustrates the dif-
ferent types of interference in Galileo bands.

Another criterion can be the intentionality. Within the 
unintentional interference group, we can emphasize: DME/
TACAN, amateur radio, TV, surveillance radars, or wind pro-
filer radars. Under the name of intentional interference (see 
Figure 2 and Figure 3), three different interference signals can 
be distinguished: jamming signals, which deliberately block or 
interfere with authorized wireless communications through 
illegal devices decreasing the signal-to-interference-plus-noise 
ratio (SINR); spoofing signals, which falsely imitate the signal-
in-space (SIS) and may hack a targeted GNSS receiver; and 
meaconing signals, which are the interception and delayed-
rebroadcast of actual GNSS signals.

In this article, we have simulated and studied two interfer-
ence signals: CWI and pulsed signals such as those generated by 
the DME or TACAN systems. A CWI signal can be modelled as

where Δfcwi is the frequency offset with respect to the GNSS 
carrier, A is the CWI amplitude, and ϕ0 is the CWI signal ini-
tial phase. 

Signals from air radionavigation systems, such as DME or 
TACAN, consist of Gaussian RF paired pulses. Pulse separation 
is 12 microseconds with each pulse lasting 3.5 microseconds. 
The maximum repetition rate is about 3,000 pulse pairs per 
second (pps). 

DME systems are designed to provide service for 100 planes 
simultaneously and the transmitted power may vary from 50 
watts to 2 kilowatts. A DME signal is typically modeled as:

FIGURE 1  Illustration of wideband and narrowband interference in the 
Galileo radio frequency bands
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where α = 4.5 • 1011 s–2 is a parameter 
controlling the pulse width and Δt = 12 
• 10–16 s is a parameter controlling the 
gap between paired pulses. The DME 
system operates between 960 and 1215 
MHz; hence, it overlaps the Galileo E5 
band.

Figure 4 shows an example of a DME 
signal in the time domain, its envelope, 
and its frequency spectrum.

State-of-the-Art Narrowband 
Interference Mitigation
Mitigation approaches can be catego-
rized into two groups: time-domain 
and frequency-domain techniques. 
Time-domain mitigation techniques are 
those that make use of only mathemati-
cal calculation without any operation in 
the frequency domain. Heavy computa-
tional loads are avoided and complexity 
is lower. Non-linear methods, filtering 
methods based on convolution opera-
tions, or blanking methods are some of 
the proposed approaches in the litera-
ture. 

Frequency-domain approaches are 
those based on signal alterations in 
the frequency domain. The article by 
A. Rusu and E. S. Lohan listed in the 
Additional Resources section near the 
end of this article presents a filtering 
method that exploits the cyclostationar-
ity property using the spectral correla-
tion function (SCF) and, therefore, can 
suppress additive white Gaussian noise 
(AWGN). Another, even simpler method 
is called zeroing, which is an excision-
based method that we will explain in the 
next section.

The literature also presents various 
transformed domain mitigations that 
are worth mentioning briefly. One is the 
wavelet transform which is a time-scale 
representation technique that overcomes 
the common limit of fast Fourier trans-
form (FFT) transformations using the 
short time Fourier transform (STFT), 
and another is the Gabor transform. 
Both of these methods separate useful 
signal and interference, removing the 
coefficients with high energy before the 

FIGURE 4  Example of a DME interferer in time (upper) and frequency (lower) domain. Middle 
plot shows its envelope
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FIGURE 6  Pulse blanking for a Galileo signal affected by a DME interferer. Upper plot: no inter-
ference mitigation; lower plot: spectrum after pulse blanking.
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inverse transform. (These methods are 
described in articles by E. Anyaegbu 
et alia and K. Ohno and T. Ikegami, 
respectively, cited in the Additional 
Resources section.

Studied Mitigations. We selected the 
methods explained in this section based 
on the tradeoff between performance in 
acquisition and tracking and the meth-
od’s complexity, which in turn is directly 
proportional to the amount of compu-
tational load. The pulse blanking and 
notch filtering methods are time-based 
approaches, while the zeroing method 
is a frequency-based one in which the 
simulated signal is grouped into blocks 
that become suitable for FFT processing.

Pulse Blanking. This method is sim-
ple to implement: it blanks incoming 
signals that exceed a certain threshold, 
as illustrated in Figure 5.

The threshold can be chosen, for 
example, as a factor of the mean value 
of the absolute value of the received sig-
nal, i.e., γ = k • E(|s(t)|) with k optimized 
according to the interference. In our 
simulations, we used, for example, k = 
3.5, chosen empirically. Figure 6 shows 
an example of pulse blanking perfor-
mance in the frequency domain in the 
presence of a DME interferer.

Notch Filtering. Another time-
domain method is notch filtering. A 
second order infinite impulse response 

(IIR) notch filter to mitigate the narrow-
band interference has been proposed, 
for example, by C. Ying-Ren et alia (see 
Additional Resources), based on the fol-
lowing transfer function:

with

is the 3 dB filter bandwidth, and fI is the 
frequency of the interferer that must be 
canceled.

The interfering frequencies are 
searched in a recursive manner, based 

on a threshold, as illustrated in Figure 7. 
As an example, Figure 8 shows the spec-
trum of a GNSS signal affected by DME 
interference, with and without notch 
filtering-based mitigation.

Zeroing. The discrete Fourier trans-
form of a sample GNSS signal s(n) can 
be written as:

Narrowband interferences can be 
rejected just by zeroing the spectral sam-
ples above a certain threshold. This time, 
the threshold γFFT is obtained according 
to the mean and the variance of the 
absolute value:

FIGURE 8  Notch filtering for a Galileo signal affected by a DME interferer. Upper plot: no 
interference mitigation; lower plot: spectrum after notch filtering.
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adaptive notch filtering mitigation 
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Table 1 Comparative table for three methods of narrowband interference mitigation
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where ε is a parameter adjusting the 
threshold (in our simulations ε = 0.5). 
Figure 9 presents an example of the zero-
ing method (in the frequency domain).

Qualitative Comparison Among 
Narrowband Mitigation Techniques
Table 1 shows the strengths and weak-

nesses of each solution. Unlike the 
blanking approach, the zeroing and 
notch methods can be used for both 
CWI and DME interference. Howev-
er, zeroing is much less effective than 
blanking against DME interference, 
and therefore it is not suitable for pulsed 
interference. The spread of the spec-

FIGURE 9  Zeroing method for a Galileo signal affected by a DME interferer. Upper plot: no inter-
ference mitigation; lower plot: spectrum after zeroing. The red line marks the threshold used.
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trum due to the steep variation in the 
time domain makes it more difficult to 
separate the useful signal from the DME 
signal. Some energy from the DME puls-
es remains after processing the signals 
employing the zeroing method.

Open-Source Simulator
The E5 Galileo band comprises two 
bands, an E5a band centered at 1176.45 
MHz and an E5b band centered at 
1207.140 MHz. The Galileo E5 signal is 
an AltBOC(15,10) modulated signal with 
a chipping rate of 10.23 Mcps. Figure 10
illustrates simulated and theoretical 
power spectral densities (PSDs) of an 
AltBOC(15,10).

Our team at Tampere University 
of Technology developed a simulator 
with which to analyze Galileo signals; 
Figure 11 illustrates an overview of 
this development. The simulator was 
initially started within the European 
Union’s Galileo Ready Advanced Mass 
MArket Receiver (GRAMMAR) project 
and is now offered via free licensing for 
research purposes.

The simulator implements the trans-
mitted signal based on an AltBOC(15,10) 
modulation with a constant envelope 
signal, according to the Galileo Open 
Service SIS Interface Control Document 
(SIS-ICD). The signal is sent over a mul-
tipath channel with up to five Rayleigh 
fading paths; noise and interference are 
added inside the channel block. 

Due to computing capacity, the sig-
nal is transmitted at an intermediate 
frequency (IF) of 20 megahertz. The 
down-sampling factor is applied before 
the channel is employed to reduce the 
simulation time. Because the processing 
of the E5a band is only carried out at the 
receiver, a lower bandwidth is needed. 
The E5a sampling rate in our simulator 
is 31.5 megahertz, while the transmitter 
sampling rate is four times higher. The 
interference generation block, included 
inside the channel simulation, is detailed 
in Figure 12. 

The receiver includes the interference 
mitigation block, the acquisition, and 
the tracking unit. Figure 13 illustrates 
the interference mitigation block.

The acquisition block estimates the 
time and frequency initial values that 
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are then fed into a tracking block. Fig-
ure 14 and Figure 15 show, respectively, 
examples of the time-frequency acquisi-
tion mesh without and with interference 
mitigation, in the case of a CWI inter-
ferer at 1176.45 MHz, i.e., an E5a carrier 
frequency.

The acquired signal is passed through 
a narrow correlator tracking block, 

including a delay lock loop (DLL) and a 
joint frequency lock Loop (FLL) – phase 
lock loop (PLL). Figure 16 presents the 
tracking unit block diagram.

Performance Comparison
We compared the performance of the 
mitigation techniques and present the 
results here in terms of detection prob-

ability at various carrier-to-noise (C/
N0) levels. Figure 17 shows the acqui-
sition performance in the presence of 
CWI for the zeroing and notch filtering 
methods (as the pulse blanking does not 
work for CWI cases). Figure 18 shows the 
acquisition performance in the presence 
of DME interference for the pulse blank-
ing and notch filtering methods (as the 
zeroing method is not so suitable for 
DME interference). Both figures also 
show the situation without interference 
mitigation.

In order to achieve a high detection 
rate, the blanking method for DME 
pulses and zeroing method for CWI are 
the most effective techniques among 
those studied.

Regarding the tracking results, it is 
worth mentioning how large the track-
ing error can become if no mitigation 
is taken into account to deal with the 
interference. The acquisition threshold is 
selected based on the highest peak of the 
time-frequency mesh. (For further dis-
cussion of this point, see the article by E. 
Pajala et alia in Additional Resources.) 

Due to some type of interference, 
for instance DME pulses, large fluctua-
tions can appear at some point along 
this mesh, and as a result the initial 
values can be extremely large as Figure 
19 shows. The computed position error 
could even be on the order of kilome-
ters, due to the fact that the acquisition 
stage would feed an erroneous estimate 
into the tracking. However, as might be 
expected, the studied mitigations are 
able to keep this error within reasonable 
values as shown in Figure 20.

FIGURE 12  Interference generation block (inside the channel portion of the simulator)
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Conclusions
The main objective of our work has 
been to analyze the impact of CWI 
and DME narrowband interference 
on the performance of the E5 Galileo 
signal, and more specifically, E5a band 
when processed independently of the 
E5b band. We have implemented and 
evaluated three types of narrowband 
interference rejections, namely pulse 
blanking, zeroing, and notch methods. 
We have shown that the notch filter-
ing has the worst performance among 
the three of them, while pulse blank-

ing and zeroing methods are the best 
for DME and CWI, respectively (but 
none of them works for both interfer-
ence types). We have also demonstrated 
that interferers with up to 10–15 deci-
bels stronger power than the E5a signal 
power can be tolerated relatively well 
and that all considered approaches 
have relatively similar performance for 
medium strength interferers. 
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FIGURE 18  Performance with and without interference mitigation in the presence of DME 
(various interference power levels)
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FIGURE 19  Tracking error without interference mitigation in the 
presence of DME, SIR = -50 dB, C/N0 = 50 dB-Hz. Multipath is not 
considered.
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