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Simulation of GNSS signals is very 
important to test and validate 
algorithms. With some algo-

rithms, such as acquisition or tracking, 
we do not need to simulate a realistic 
constellation with actual ranges, Dop-
pler or navigation data. We can simply 
simulate the signal after reception at a 
receiver’s front-end and only take into 
account and fix to desired values cer-
tain parameters, such as the intermedi-
ate and the sampling frequencies, the 
Doppler and Doppler rate, or the signal 
and the noise power. This last param-
eter requires some caution, because 
the noise power depends on the type of 
sampling (real or complex).

In this article we show how to 
simulate noisy GNSS signals after a 
front-end. We will first present the 
model considered for the received sig-
nal and review the constraints on the 
intermediate and sampling frequencies 
for real and complex sampling. Then, 
we will introduce the noise, review the 
properties of a white noise, and discuss 
the sampling of a band-limited white 
noise to determine the expression of 
the noise power.

Signal model
The GNSS signal received at the anten-
na can be modeled as

where t is the time; aI and aQ are 
amplitudes of the in-phase (I) and 
quadrature-phase (Q) components; 
xI(t) and xQ(t) are the baseband signals 
of the I and Q components consist-
ing of a spreading code and possibly a 
secondary code, a sub-carrier or data; 
fr includes the carrier and Doppler fre-
quencies; and φr is the carrier phase. 

It is also possible to have only one 
component, e.g., aQ = 0 for the GPS L1 
C/A signal. The model could be more 
complete and include the Doppler 
effect on the code or the Doppler rate, 
but that would not change the follow-
ing discussion and is thus omitted. 
An example of the spectrum for sr(t)
— denoted sr(f)— is given in Figure 1, 
where B is the bandpass bandwidth of 
the signal.

Let us first consider the front-end 
depicted in Figure 2 (top), which per-
forms real sampling. This is a very 
simplified representation, but enough 
for our discussion. This front-end is 
composed of:
•	 a bandpass filter (BPF) for image-

rejection
•	 a mixer to bring the signal to a

lower frequency
•	 a low pass filter (LPF) for anti-alias-

ing (aliasing is explained next); this 
filter can also be a bandpass filter

•	 an analog-to-digital converter
(ADC)
Of course, there are also a few 
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How does one compute the noise power to 
simulate real and complex GNSS signals?

FIGURE 1  Example of incoming signal spectrum
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amplifiers in a front-end, not shown in Figure 2. See the
Additional Resources section for details about real and com-
plex front-end designs.

After the mixer and the low pass filter, the signal is

where fi = fr – fLO is the intermediate frequency and φi = φr
– φLO, with fLO and φLO the frequency and phase of the local 
oscillator. Figure 3 shows the spectrum of this baseband sig-
nal. To avoid aliasing, i.e., an overlapping of the positive and 
negative sides of the spectrum, we require fmin ≥ 0 or, equiva-
lently, fi ≥ B/2.

After the ADC, the signal is sampled and becomes

where Ts is the sampling period equal to 1/fs, with fs being 
the sampling frequency. The spectrum of the sampled signal 
is the spectrum of the continuous-time signal duplicated 
around each multiple of fs, as shown in Figure 3. To avoid
aliasing, we require fs ≥ 2fmax, or fs ≥ 2fi + B. This is the well-
known Nyquist-Shannon sampling criterion.

Now, let us consider the front-end depicted in Figure 2
(bottom), which performs a complex sampling. After the 

mixer and the low pass filter, the baseband signals are

and

The complex baseband signal is then

with Figure 4 shows the corresponding spectrum 
(assuming φ = 0 rad, else the spectrum would not be exactly 
on the real and imaginary axes), remembering that 

and

(see Additional Resources section for a reference about this). 
In this case, even if there can be an aliasing in each branch, 
when considering the signal as complex, aliasing is not pos-
sible because the negative side of the spectrum is canceled 
as shown in Figure 4 (second from bottom).Therefore fi can 
take any value, whatever the signal bandpass bandwidth B.

After sampling, the signal is

The bottom portion of Figure 4 shows the signal spectrum
at this point, and, to avoid aliasing, we should have

Therefore, the sampling frequency now depends only on 
the signal bandpass bandwidth. 

Noise Power Computation
In reality, an element of noise is present in addition to the 
received signal. This noise, called thermal noise, is induced 
by the antenna and the front-end themselves and is assumed 

to be an additive white Gaussian noise 
(AWGN). So, we next explain how to 
compute the power of this noise at the 
output of the front-end.

A white noise is a noise whose power 
spectral density (PSD) is equal at all fre-
quencies, as shown in Figure 5, top. As the 
PSD is the Fourier transform of the auto-
correlation (Wiener-Khinchin theorem), 
the autocorrelation of a white noise is null 
everywhere except at zero, as shown in 
lower plot in Figure 5.This implies that
the values of a white noise at different 
instants are uncorrelated, and, therefore, 

FIGURE 2  Simplified front-end, with a real sampling (top) and with 
complex sampling (bottom)

FIGURE 3  Spectrum of the baseband signal in real sampling front-end, after mixing and filtering 
(top), after sampling (bottom).
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the mean of a white noise is zero. This 
is true whatever the probability density 
function of the noise, which can be 
Gaussian, Laplace, uniform, and so 
forth (as long as the mean is zero).

The two-sided PSD of the thermal 
noise is equal to N0/2, where N0 is the 
noise power density and depends on 
the effective temperature of the front-

end. However, the front-end filters the 
incoming signal; therefore, the thermal 
noise is filtered, too, and the noise just 
before the ADC is not white. We will 
thus see the conditions to obtain a 
white noise after the ADC.

 With a real sampling, assuming an 
ideal brick wall filter of baseband band-
width BF, the noise just before the ADC 

will be a band-limited white noise, as 
shown in Figure 6, and the noise power 
(which is equal to the integral of the 
noise PSD) will be σ2 = N0BF.

The autocorrelation function of this 
band-limited white noise is

and is also illustrated in Figure 6.This
autocorrelation is equal to zero when 

 with k an integer different than 
zero, which means that the values of the 
band-limited white noise that are dis-
tant by  are uncorrelated. Therefore, 
if we sample this band-limited white 
noise with a time interval of , i.e., 
with a frequency of fs = , the auto-
correlation of the sampled noise will 
be null everywhere except at zero, and 
thus the sampled noise will be white.

This can also be seen using the PSD. 
After the sampling, the noise spectrum 
is duplicated around each multiple of 
fs. Figure 7 (top) shows the spectrum of 
the band-limited white noise sampled 
with a sampling frequency higher than 
2BF, and the noise is clearly not white. 
Figure 7 (middle and bottom) shows
the spectrum of the band-limited white 
noise sampled with sampling frequen-
cies of 2BF and BF, respectively. In both 
cases, the noise is white and the noise 
power (which is equal to the integral of 
the noise PSD in the interval 

) is N0BF.
On the other side, to respect the 

Nyquist-Shannon theorem, we should 
have fs ≥ 2BF. Therefore, the only pos-
sibility to satisfy both conditions is fs ≥ 
2BF, and thus the noise power must be 
σ2 = N0fs/2.

Similar developments can be done 
for the case of complex sampling. The 
difference is that the sampling frequen-
cy must be equal to fs = BF /k to get a 
discrete white noise, and the Nyquist-
Shannon theorem imposes fs  ≥ BF. 
Therefore, the only possibility to satisfy 
both conditions is fs  = BF, and thus the 
noise power on each branch must be σ2

= N0 fs, i.e., twice the noise power that 
exists with real sampling.

FIGURE 4  Spectrum of the baseband signal in complex sampling front-end, after mixing and 
filtering (top), after sampling (bottom).

FIGURE 5  PSD (top) and autocorrelation (bottom) of a white noise
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Application to GNSS signals
Using the previous models, at the out-
put of the front-end, a real GNSS signal 
can be modeled as

and a complex GNSS signal can be 
modeled as

where w, wI and wQ are white Gauss-
ian noises of power σ2 (the value of σ2

for wI and wQ is twice the one for w, as 
mentioned previously). The values for 
aI and aQ can correspond to the ampli-
tudes after the antenna, and σ can be 
computed using the expressions of the 
previous section. However, a normal-
ization is usually performed because 
only the ratio between the signal power 
and the noise power matters, not their 
absolute value.  

To describe the level of a received 
GNSS signal, two parameters can be 
used: the signal power, or the carrier 
power to noise power density ratio (or 
carrier-to-noise ratio). The power of 
the baseband signals xI(t) and xQ(t) is 
equal to 1 because they are based on 
binary waveforms of amplitude ±1. 
Therefore, the power of an I/Q compo-
nent is 

The carrier-to-noise ratio is simply the 
ratio between the signal power and the 
noise power density, i.e., C/N0 = P/N0, 
thus 

Both signal amplitude and noise
standard deviation (σ) have very low 
values. Consequently, in simulation, it 
is convenient to perform a normaliza-
tion, usually to have a noise standard 
deviation (std) of 1. For that, it is suf-
ficient to divide both signal amplitude 
and noise std by the noise std. 

Previously we have seen that the 

noise power is not the same depending 
on the type of sampling. With the nor-
malization, the noise std is the same for 
both real and complex sampling; so, 
it is the signal amplitude that will be 
different according to the type of sam-
pling. Table 1 summarizes the expres-

sions to compute the noise std and the 
component amplitude from the com-
ponent power and noise power density, 
without and with normalization. Note 
that in the normalized case, the signal 
amplitude can be determined directly 
from the carrier-to-noise ratio and the 

FIGURE 6  PSD (top) and autocorrelation (bottom) of a band-limited white noise

FIGURE 7  PSD of a sampled band-limited white noise, with fs = 3BF (top), fs = 2BF (middle), fs = BF 
(bottom)

TABLE 1  Expressions of the noise std and amplitude for one I/Q component. Parameters 
are in linear scale not log scale.
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sampling frequency, thus the computa-
tion of the noise power density N0 is 
not required.

Let’s consider two examples to illus-
trate all this. First, we want to simulate
a GPS L1 C/A signal of  C/N0 = 25
dBHz, sampled at fs = 5MHz with real
sampling. With normalized values, 
the noise std will be 1, and the signal 
amplitude will be 

Second, we want to simulate a GPS 
L5 signal with a power of  –174 dBW,
sampled at fs = 524 MHz with complex
sampling, and N0 = –204  dBW/Hz.
Thus, the power of each I/Q component 
is  –177 dBW since both components
have the same power. With normalized 
values, the noise std will be 1, and the 
signal amplitude will be 

To conclude, Table 2 provides a con-
cise summary with all the parameters 
discussed in the article.
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Additional Resources
For more information about parallel acquisition 
architectures, refer to:
Leclère, J., “Resource-efficient parallel acquisition 
architectures for modernized GNSS signals,” Ph.D. 
thesis, EPFL, Switzerland, 2014.

For information about GNSS receivers, including 
real and complex front-end designs, refer to:

Borre, K., et al., A Software-Defined GPS and Galileo 
Receiver: A Single-Frequency Approach, Birkhäuser 
Boston, 2007

Chastellain, F., and C. Botteron, and P.-A. Farine, 
“Looking Inside Modern Receivers,” IEEE Micro-
wave Magazine, vol. 12, no. 2, pp. 87–98, 2011

van Diggelen, F., A-GPS: Assisted GPS, GNSS, and 
SBAS, Artech House, 2009.

For details about quadrature signals, please see:

Lyons, R., Understanding Digital Signal Processing, 
Prentice Hall, 2010.
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TABLE 2  Expressions to use with Equations (12) and (13). F is the linear noise figure of the front-
end, TANT is the effective temperature of the antenna, and TAMB is the ambient temperature.




