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   GNSS 
Solutions: 

How can a GPS 
receiver or MEMS 
(micro-electro-
mechanical systems) 
inertial sensor 
assembly sense 
a host platform’s 
orientation? How 
can these sensor 
technologies be 
combined together?

Many applications need 
information on the 
orientation or attitude of 
the host platform, such 

as in the case of automatic flight 
control, airborne mapping or imaging, 
antenna pointing control, and so on. 
The attitude can be mathematically 
represented by any of the following set 
of parameters: a quaternion, direction 
cosine matrix, Gibbs vector, or Euler 
angles. All of these representations are 
mathematically equivalent and can be 
transformed from one to another. 

Attitude determination 	
from GPS
Two or more independent GPS 
receivers with L1 carrier phase output 
capability form the basis of an attitude 
determination (AD) system. However, 
most commercial AD products use a 
common reference clock to convert 
the received GPS RF signals into 
the intermediate frequency (IF). 
The IF signals are then fed into the 
tracking loops to demodulate GPS 

data and generate observations such 
as pseudorange, Doppler, and carrier 
phase. 

One benefit of using a common 
clock reference is that the clock error 
is a common one for carrier phase 
measurements from all antennas, and 
thus it can be removed by forming 
single-differences between antennas. 
This is crucial for deriving the attitude 
solution from the inter-antenna single-
differenced carrier phase. 

GPS AD algorithms using 
inter-antenna single-differences 
can generally be divided into three 
functional categories: the line bias 
solution, integer ambiguity resolution, 
and the attitude solution, which will 
be discussed later. However, if double-
difference measurements are used, 
the line bias solution is no longer 
necessary.

Line biases are mainly caused 
by the differences in cable lengths 
between antennas and receivers. 
They are usually treated as constant 
quantities and calibrated by a 
procedure prior to operating the GPS 
attitude determination receiver. They 
can also be treated as components 
of the state vector of the system, and 
hence estimated along with other 
states.

Because a GPS receiver can 
measure only the fractional part of 
the carrier phase, the integer number 
of wavelengths between antenna 
and satellite is unknown. Numerous 
approaches have been developed 
to resolve the integer ambiguity 
problem, including motion-based 
methods, search-based methods, or a 
combination of both. 

Motion-based methods accumulate 
the data for a period of time until there 
is an obvious change in the visible 
GPS constellation or a rotation of 
the host platform. The search-based 
methods, as the name implies, search 
for the most likely solution from a set 
of the possible candidate values (often 
termed the “search space”). A motion-
based method can be used to reduce 
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the number of ambiguity candidates 
to be searched and therefore improve 
the efficiency of the search procedure. 
Figure 1 depicts a search result using 
the ambiguity resolution function 
(ARF). The correct solution lies at the 
highest peak (circled).

Attitude determination 
from MEMS inertial sensors
Micro-electro-mechanical sensors 
(MEMS) are experiencing rapid 
growth and demand in many 
applications because of their small 
size and relatively low cost, making 
them ideal components of a compact 
and affordable attitude and heading 
reference system (AHRS). 

Today’s MEMS sensors are still 
much less accurate than conventional 
fiber-optic-based or ring laser gyro 
inertial sensors as used for mobile 
mapping and precise navigation 
applications. Well-designed navigation 
filters and extra sensors can help to 
address these problems. However, 
the complex algorithms used in 
these approaches require powerful 
computational platforms to generate 
solutions in highly dynamic mobile 
applications. Therefore, a tradeoff 
exists between the computational 
speed and complexity of the data 
processing algorithms.

A typical MEMS sensor-based 
AHRS consists of micro-electro-
mechanical accelerometers, 

magnetometers, and gyroscopes, 
which respectively sense the tri-axial 
acceleration of the host platform, the 
Earth’s magnetic field vector, and the 
tri-axial angular rate. 

For static applications, these 
measurements are combined with the 
known acceleration due to the gravity 
field and the Earth’s magnetic vector in 
the reference coordinate system to give 
the orientation of the host platform. 
However, for a dynamic platform, 
gyroscope measurements must be used 
in order to update the attitude solution. 

But a MEMS gyroscope loses 
accuracy very rapidly because of 
its bias drift characteristics. The 
acceleration derived from GPS can 
be used to calibrate the drift of the 
MEMS solution. Figure 2 depicts the 
100Hz Euler angles derived from 
accelerometer and magnetometer data 
for a static system.

Combination of GPS and 
MEMS inertial sensors
There are good reasons to combine 
GPS receivers and MEMS inertial 
sensors. For example, the inertial 
solution is self-contained but drifts 
over time, whereas the GPS solution 
has long-term stability but its signal 
is vulnerable to RF interference 
or blockage by buildings, etc. A 
combination of the two systems seems 
an ideal solution.

When the platform is static, the 

accelerometer and magnetometer data 
are sufficient for computing the tri-
axial angular solutions. The gyroscopes 
can provide accurate short-term 
updates after compensating for their 
biases. The biases can be compensated 
by an in-house calibration, through 
zero-velocity updating (ZUPT), or 
simply averaging during a static 
period. In the absence of accurate 
bias estimation, however, the attitude 
accuracy would degrade over time. In 
a dynamic situation the GPS can be an 
external aid. 

Two options for using the 
GPS involve either a GPS attitude 
determination system based on 
multiple antennas, or a standard 
navigation GPS receiver (with a 
single antenna). The multi-antenna 
configuration, as described earlier, can 
be used directly to correct the MEMS 
attitude solution as well as to estimate 
the gyroscope drift. The single-antenna 
solution has a simpler hardware 
implementation but needs additional 
software to support the INS, as will be 
discussed next. 

One approach to combining 
single-antenna GPS with MEMS 
sensors is through the use of GPS-
derived acceleration. This can be 
implemented by double-differentiating 
the carrier phase to obtain the range 
acceleration (after scaling to the proper 
units), which together with the GPS 
satellites’ acceleration derived from 
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FIGURE 1  Search result using the ambiguity resolution function (ARF) in 
the pitch-yaw space

FIGURE 2  The 100Hz static attitude solution from MEMS accelerometer and 
magnetometer sensors for a static system
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the broadcast ephemeris can be used to derive the receiver’s 
acceleration. The GPS-derived acceleration provides a 
reference for the output of the accelerometers. In addition, 
combining the accelerations with the magnetometer data 
permits the tri-axial attitude to be determined, even on a 
moving platform. 

The GPS solution has a relatively low update rate and, 
therefore, the gyroscope data can be used to interpolate 
the solution between two successive GPS outputs. On-line 
estimation of the gyroscope biases is also possible with this 
procedure. An example of an integrated AHRS system is 
shown in Figure 3. 

Both satellite-based radio navigation and MEMS-based 
inertial navigation technologies are growing quickly. When 
the European Galileo system and the Chinese Compass are 
fully operational, we can expect that more satellite navigation 
signals in the sky will support innovations in the attitude 
determination technology, including the receiver technology, 
the integer ambiguity resolution, and robust and accurate 
attitude solution. 

However, the major inherent disadvantage of satellite 
navigation systems will remain, including blocked, 
weakened, or interfered signals in harsh environments. The 

FIGURE 3  Structure of an AHRS system based on the integration of GPS and 
MEMS sensors
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What are the 
differences between 
the coherent and 
non-coherent 
versions of deep 
integration of 
combined inertial 
navigation and 	
GNSS systems 	
(INS/GNSS)?

Deep (or ultra-tightly-coupled) 
INS/GNSS integration differs 
from conventional integration 
architectures, such as tightly 

coupled ones, in that the GNSS signal 
tracking and INS/GNSS integration 
functions are combined into a single 
estimation algorithm. This provides 
improved GNSS signal-tracking 
performance in poor signal-to-noise 
environments resulting from signal 
attenuation, incidental interference, or 
deliberate jamming.

Figure 1 shows a closed-loop 
deep, or ultra-tightly-coupled (UTC), 
INS/GNSS integration architecture. 
The GNSS receiver performs front-
end conditioning and sampling of 
the incoming GNSS signals and 
then correlates them with internally 
generated reference signals. The 
accumulated correlator outputs, 
known as Is and Qs, are output from 

the GNSS receiver to the INS/GNSS 
integration algorithm Kalman filter.  

The GNSS receiver inputs 
numerically controlled oscillator 
(NCO) commands that control the 
reference signals, keeping each code 
phase and carrier frequency aligned 
with the corresponding incoming 
GNSS signal. The NCO commands 
are generated using the (corrected) 
inertial navigation solution, satellite 
constellation ephemeris parameters, 
satellite and receiver clock error 
estimates, and ionosphere and 
troposphere propagation delay 
estimates. Finally, the Kalman filter 
corrects the inertial navigation solution 
to form the integrated navigation 
solution.

Deep INS/GNSS integration 
algorithms may be divided into 
two categories, coherent and non-
coherent. Coherent algorithms input 
the GNSS accumulated correlator 
outputs, the Is and Qs, directly to 
a Kalman filter as measur ements. 
Non-coherent algorithms first pass 
the Is and Qs through code and 
carrier discriminator functions, 
similar to those used in conventional 
GNSS signal tracking. Coherent deep 
integration may be further divided into 
centralized and federated approaches.

Figure 2 shows the data flow 
between the GNSS receiver and 
integration algorithm for coherent 
deep integration with a centralized 
Kalman filter. For the legacy GPS 
signals, the minimum rate at which 
Is and Qs may be generated is the 
navigation-data-message rate of 50 Hz 

due to the navigation message data bits. 
Thus, inputting the Is and Qs directly 
to the Kalman filter requires it to be 
iterated at 50 Hz or more. 

For the new data-free signals (e.g., 
pilot components of GPS L2C and 
Galileo L1, etc.), or where navigation-
data wipe-off is implemented, other 
constraints apply. The measurement 
vector is also large, with the number 
of components equal to six times the 
number of signals tracked (assuming 
three complex correlators per signal 
– early, prompt, and late).

To maintain carrier tracking, 
each reference carrier phase within 
the receiver may be kept aligned with 
that of the relevant GNSS signal by 
feeding back corrections from the 
Kalman filter after each set of I and 
Q measurements is processed. The 
round-trip communication lag can 
limit the bandwidth; however, a lower 
bandwidth may generally be used for 
inertially aided carrier phase tracking 
than for stand-alone. 

Alternatively, the reference-signal 
carrier phase offsets may be estimated 
as Kalman filter states. This enables 
the carrier phase to be tracked 
without having to keep the reference 
and signal phases aligned within the 
receiver. However, the reference and 
signal carrier frequencies must still 
be synchronized in order to maintain 
signal coherence within the receiver’s 
correlators over the accumulation 
interval.

A distinct problem with 
implementing coherent deep 
integration using a centralized Kalman 
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filter is the high processor load demanded by a fast update 
rate and large state and measurement vectors. Therefore, in 
all practical implementations of coherent deep integration, 
a federated Kalman filter architecture is used, as shown in 
Figure 3. 

A bank of tracking Kalman filters input the I and Q 
measurements at 50 Hz. Generally, one filter is available 

FIGURE 1  Closed-loop dee p INS/GNSS integration architecture

FIGURE 2  Receiver to Kalman filter communication in centralized coherent 
deep INS/GNSS integration

FIGURE 3  Receiver to Kalman filter communication in federated coherent 
deep INS/GNSS integration
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for each signal 
tracked, inputting 
six measurements, 
though dual 
frequency 
measurements 
from the same 
satellite may 
share a filter. Each 
tracking pre-
filter estimates a 
minimum of three 
states: code phase 
tracking error, 
carrier frequency 
tracking error, and 
reference-signal 
carrier-phase offset. 

At a slower 
rate, typically one or two Hertz, each 
tracking filter generates pseudorange 
and pseudorange-rate measurement 
innovations (i.e., errors in the locally 
generated signal) from its code-phase 
and carrier-frequency tracking error 
state estimates, respectively. Note that 
one is directly proportional to the 
other (assuming a first-order Doppler 
shift). The measurement innovations 
are then input to the INS/GNSS 
integration Kalman filter, which 
is identical to that used for tightly 
coupled integration. 

To prevent cascading problems 
between the tracking pre-filters 
and the integration filter, the code 
phase and carrier frequency state 
estimates are zeroed whenever 
measurements are output to the 
integration filters. This ensures that 
the same information is not present 
in both filters simultaneously and 
is known as a federated zero-reset 
(FZR) integration architecture. This 
type of deep integration algorithm 
has been developed by the Aerospace 
Corporation, L3-Communications/
Interstate Electronics Corporation (L3-
C/IEC), Ohio University, and others.

The principal benefit of coherent 
deep integration is that bypassing the 
discriminators avoids introducing 
unmodeled non-linearities in the 
measurement inputs to the Kalman 

filter. This enables higher gains 
to be used in the Kalman filter, as 
the assumed measurement noise 
covariance does not need to overbound 
the discriminator non-linearities. 
Furthermore, coherent code tracking is 
less noisy than noncoherent tracking.

The main disadvantage of coherent 
deep integration is that the reference-
signal carrier phase offset must be 
known in order to extract code-
tracking information from the I and Q 
measurements. Therefore, the tracking 
pre-filters must be able to track carrier 
phase in order to track code. 

Consequently, coherent deep 
integration is the preferred solution 
for applications where the precision 
of carrier-phase tracking is required. 
However, it is unsuited to applications 
that require operation under low 
signal-to-noise environments, as both 
code and carrier-frequency tracking 
can be maintained at a lower carrier 
power–to-noise density, C/N0, than 
carrier-phase tracking. The lowest 
C/N0 reported at which coherent deep 
integration has been maintained in 
hardware is 15 dB-Hz with data-bit 
estimation.

Figure 4 shows the data flow 
between the GNSS receiver and 
integration algorithm for non-coherent 
deep integration. Without navigation-
data wipe-off, the Is and Qs are used to 
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compute code and carrier-frequency 
discriminator functions at 50 Hz. Any 
standard discriminators may be used. 

The code discriminator function is 
independent of the carrier phase; so, it 
can be computed regardless of whether 
sufficient C/N0 exists to track carrier 
phase. This enables non-coherent deep 
integration to maintain tracking in 
weaker signal-to-noise environments 
than its coherent counterpart.

Where no significant data lag 
occurs, the integration algorithm’s a 
priori estimate of the code-phase and 
carrier-frequency tracking errors is 
zero; so, normalized discriminator 
outputs may be converted to 
pseudorange and pseudorange-rate 
measurement innovations simply by 
applying a scaling factor (assuming a 
first-order Doppler shift). 

The measurement innovations are 
averaged to reduce the Kalman filter 
update rate from 50 Hz to between 1 
and 10 Hz. Averaging should always 
be used in preference to sub-sampling 
as it reduces the noise. Noncoherent 
deep integration algorithms have been 
developed by Draper Laboratories, 
Honeywell, L3-C/IEC, QinetiQ, 
Raytheon, and others.

In theory, carrier phase 
discriminators may be used in non-
coherent deep integration. However, 
coherent deep integration is better for 
carrier-phase tracking. For applications 
where both high precision and low 
C/N0 operation are required, mode 
switching should be implemented 
with coherent integration used as the 
primary mode and noncoherent as the 
reversionary. 

Mode switching may be 
implemented at the pre-filtering 
stage, enabling a common INS/GNSS 
integration Kalman filter to operate in 
both modes (and for tightly coupled 
integration during initialization). 
Furthermore, some signals may 
be tracked coherently and others 
noncoherently at the same time. This 
is useful in weak-signal environments, 
where some signals are attenuated 
more than others.
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