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N avigation — if you are reading 
this magazine, you almost cer-
tainly have some level of interest 
in navigation technology, which 

has seen an incredible explosion in use 
within many different fields.  

Due in large part to GPS, many of 
us have become addicted to navigation, 
in the sense that we are used to having 
it available, and we become unsettled 
— or even grumpy — when it is not. In 
the past, when I traveled to a new city I 
used to rely exclusively on maps to navi-
gate. But ever since I purchased a GPS 
receiver for this purpose, I have come to 

depend on it to the point that I almost 
feel as though I could not find my way 
around if I happen to forget to bring it 
along. 

This kind of experience has played 
out in many walks of life, from military 
operations to location-aware social net-
working operations. Just as the lights 
come on when we flip the light switch, 
we expect to be able to know our posi-
tion at all times.

Because GNSS does not and cannot 
work in every circumstance, however, 
use of non-GNSS sources for navigation 
has increased significantly. Our addic-
tion to navigation, as well as advances 
in technology that enable us to do amaz-
ing things on very small computational 
platforms such as smartphones, is driv-
ing efforts to develop a wide variety of 
navigation technologies in addition to 
GNSS. In fact, this year the world’s old-
est and best-known international navi-
gation conference has added a plus sign 
to its name — ION GNSS+ — to reflect 
the significant role of non-GNSS tech-
nologies. 

What’s Next for Practical
Ubiquitous Navigation?
    World Models and Magnetic Field Maps

Blame it on GPS if you want, but our location addiction and 
growing expectation of the ability to navigate anywhere at 
any time is leading inevitably into new areas of research and 
development to enable positioning in places where GNSSs don’t 
work. A crucial element in any navigation system — past, present, 
or future — is a world model: knowledge about and from our 
physical environment that enables us to make sense of navigation 
sensor data. This article provides examples of world models in 
GPS and visual navigation, describes efforts to use magnetic 
field maps to navigate in the absence of GPS positioning, and 
advocates the need for self-building world models based on 
data collected by the same sensors with which we navigate.
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Figure 1 illustrates the wide variety 
of current (and past) methods used for 
navigation, many of which are cur-
rent areas of research in the Advanced 
Navigation Technology (ANT) Center 
at the Air Force Institute of Technology 
(AFIT) as well as many other organiza-
tions. The navigation research commu-
nity has essentially taken a “shotgun” 
approach of attempting to get each of 
these to work for various applications. 

Although specific features distin-
guish each approach from the others, 
let’s step back a bit and consider the 
problem in a more generalized sense. 
Doing so enables us to think about the 
problem differently and gain valuable 
insights not possible through a scatter-
shot approach.

I would like to propose an idea that 
may seem somewhat surprising: Every 
navigation system works exactly the same 
way. In the discussion that follows, I will 
seek to show that every existing naviga-
tion system, including all of those listed 
in Figure 1, essentially perform exactly 
the same set of operations. When we 
understand this generalized naviga-
tion framework, then we can see where 
improvements need to be made in order 
to meet tomorrow’s — or even today’s — 
navigation challenges. 

Many of these prospective improve-
ments are well recognized, but one area 
of potential gain is usually not con-
sidered — the so-called “self-building 
world model.” I will explain this phrase 
a little later, but first we must describe 
our generalized navigation framework.

Every Navigation System 
Works Exactly the Same Way
All navigation systems follow the pro-
cess described in Figure 2. Each depends 
on a sensor that exists in the real world. 
This sensor detects various physical phe-
nomena and converts what it detects into 
some form of raw data (voltages, binary 
data, other signals, and so forth). 

Sometimes this raw data will be 
converted into more useful informa-
tion almost immediately. For example, 
a video camera collects images at a high 
rate (data), but we might also process the 
video stream to determine that a partic-

ular object is now visible to the camera 
(information).

Next, let’s consider what is called the 
world model in Figure 2. This represents 
knowledge about the real world that we 
need to make use of the sensor data. 
Included in this model are such things 
as the locations of navigation beacons, 
signal characteristics, or a gravity field 
model. (I will give more examples of 
world models later).

Another important aspect of the 
problem is the navigation state, repre-
sented in the bottom right portion of 
Figure 2. In terms of our generalized 
diagram, this refers to an estimated or 
calculated navigation solution (which 
may or may not be in the form of a for-
mal state vector). The navigation state is 

normally the desired output from a navi-
gation system and includes quantities 
like position, velocity, attitude, or time.

The prediction algorithm relates the 
navigation state with the world model. 
Generally, this algorithm is able to use 
the world model to predict the mea-
surements for any particular naviga-
tion state. Both the world model and 
the navigation state must be sufficiently 
detailed in order to generate a valid pre-
dicted measurement. For example, if we 
are considering a VOR/DME beacon 
for aviation, a world model that knows 
only the color of the VOR/DME stations 
would clearly be insufficient.

The final (and very critical) block in 
Figure 2 is the comparison between the 
predicted measurements and the actual 

FIGURE 1  Common navigation systems/methods

FIGURE 2  How all navigation systems work
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measurements. The most common use 
of this comparison is to update the state 
estimate in such a way that the predicted 
and actual measurements are in agree-
ment (the arrow extending downward 
from the comparison block). 

A classic example of this is an 
extended Kalman filter update. In fact, 
in the Kalman state update equation, we 
can see elements of the world model/pre-
diction algorithm, the state estimate, the 
comparison, and the update:

Although this well-known extended 
Kalman filter equation clearly shows 
many aspects of our generalized naviga-
tion diagram, it is by no means the only 
algorithm that uses this approach. Vir-
tually every estimation algorithm that is 
used for navigation has these kinds of 
elements present in one form or another. 

One more part of the diagram 
remains that we have not yet discussed 
— the arrow labeled World Model 
Updates pointing upward from the 
comparison block. On occasion, this 

comparison between predicted and 
sensor measurements — in addition to 
updating the state — can also be used to 
update the world model. 

This world model update is a critical 
part of a “self-building” world model, 
which we will come back to later. For 
now, though, let’s look at two different 
(and contrasting) examples to demon-
strate the applicability of this model to 
a wide variety of navigation problems.

Example 1: GPS
Figure 3 shows this basic navigation 
framework applied to GPS. In the real 
world, GPS satellites emit RF signals that 
are picked up by a receiver and turned 
into pseudorange measurements. The 
world model for GPS consists mainly 
of satellite position information (in the 
form of satellite ephemeris) and satellite 
clock information. 

The GPS world model could also 
incorporate various forms of error 
modeling, such as tropospheric and 
ionospheric delay models, relativistic 
effects, multipath models, differential 
corrections, and so forth. These more 
advanced world model components are 
required for users who desire higher lev-
els of accuracy.

The GPS navigation state consists 
of an estimate of the user position and 
clock error, which are combined with 
the world model to generate predicted 
pseudoranges in a relatively straightfor-
ward manner. The GPS navigation algo-
rithm will then compare the predicted 

and actual pseudoranges in order to 
correct the navigation state, often using 
an extended Kalman filter or an iterative 
least-squares approach. 

Note that a typical GPS user does 
NOT update the world model. World 
model updates (i.e., ephemeris and sat-
ellite clock estimation) are performed by 
the GPS system itself — specifically, the 
2nd Space Operations Squadron at the 
GPS Master Control Station.

One of the reasons that GPS works 
so well for so many users is that we have 
created a real-world entity (satellites) 
that can be easily modeled. The satellite 
position and clock values can be calcu-
lated using a set of relatively simple equa-
tions that is freely available to any user 
by accessing the GPS Interface Specifi-
cation (in the case of satellite position 
and clock, Table 20-IV and Equation [2] 
in IS-GPS-200F <http://www.navcen.
uscg.gov/pdf/IS-GPS-200F.pdf>). This 
“world model” matches the real world 
very well. So, because the GPS Opera-
tional Control Segment takes on the task 
of updating satellite ephemeris and clock 
parameters, the user does not have to be 
involved in this process, which greatly 
simplifies the navigation task.

GPS is an example of a “create-the-
world” approach to navigation, in which 
we build and deploy components that 
generate everything in the real world 
needed for navigation. This is done in a 
manner that is optimized for the user. 
Other examples of a “create-the-world” 
approach to navigation would include 
any form of navigation beacons (such 
as VOR/DME stations for aviation) or 
radar.

While “create-the-world” approach-
es to navigation are highly appealing 
from a user point of view, they do have 
drawbacks. First of all, resources must 
be available to deploy and maintain the 
infrastructure that is needed to support 
these kinds of approaches. Development, 
deployment, and maintenance of the 
GPS system has cost billions of dollars, 
and while this has generally been con-
sidered a good investment — given the 
huge number of users, the resulting eco-
nomic growth, and the general benefit to 
society as a whole — there is a limit to 

FIGURE 3  Generalized navigation framework applied to GPS
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how many systems of similar scale can 
be deployed by any one nation or group 
of nations.

Another drawback of “create-the-
world” approaches is that they only work 
in limited environments and situations. 
GPS is considered a worldwide system, 
but that does not mean that it works 
everywhere that a user wants to navi-
gate. Having a GPS receiver will not help 
you much if you want to navigate under 
water, underground, in many indoor 
environments or places with interfering 
signals. 

Our growing addiction to navigation 
has created demand for ubiquitous navi-
gation — that is, the capability for navi-
gating in any environment at any time. 
This, in turn, has prompted a great deal 
of research into approaches that involve 
natural signals (not man-made) or man-
made signals that already exist but for 
purposes other than navigation (called 
signals of opportunity). We will now 
consider a navigation system that falls 
strongly in the natural signal camp — 
human visual navigation.

Example 2:  
Human Visual Navigation
Imagine that you are blindfolded and 
dropped at an unknown location in 
the city in which you live. Your goal is 
to figure out where you are so that you 
can make your way back home. When 
the blindfold is removed, the first thing 

you’ll do is look around, searching for 
something familiar.

The human brain does an amazing 
job of taking in visual information (sen-
sor data), and comparing that against an 
internal database of remembered posi-
tions/objects (a world model). For the 
sake of argument, let’s assume that you 
do not recognize anything at first when 
the blindfold is removed. You may see 
cars, stores, houses, and other visual 
features, but none of them are familiar. 
Another way of saying this, in our gen-
eralized navigation framework, is that 
the comparison between the sensor data 
and the world model does not return any 
matches.

Since you don’t recognize anything, 
you start walking, and after several min-
utes of walking you come to an inter-
section that “looks familiar,” but you’re 
still not 100 percent sure of where you 
are. What does it mean to see things that 
“look familiar” but not yet know your 
location? It means that you now have 
sensor data that is starting to match 
your mental database, but in such a 
way that you may not have completely 
nailed down your exact location. This 
highlights the fact that as humans, our 
“world model” (i.e., memory of what 
objects are where in the world) is not 
perfect, and we have varying levels of 
detail in our personal world models.

Back to the finding your way home 
mission: As you consider this “looks 

familiar” feeling, you might be saying 
to yourself, “If I am where I think I am, 
then around the next corner I will see a 
Walgreens drug store.” 

What are you doing at this point? In 
the generalized navigation framework, 
you are making many different guesses 
of your navigation state (location), using 
your world model (memory) to predict 
what we will be seeing, and comparing 
that with our sensor data (what you see).

You continue walking until you 
reach a spot where you finally figure out 
where you are. This means that you now 
have identified a variety of features that 
all corroborate a guess of your location. 

As humans, we have a very strong 
ability to know when we have this level 
of surety. In other words, we know what 
we know. At some point, we become 
“sure” of our location, and this is the 
point where we have so much evidence 
coming in from our eyes that matches up 
with our world model and is sufficiently 
unique, that we know, beyond a shadow 
of a doubt, exactly where we are.

Figure 4 shows the generalized 
framework for this human visual navi-
gation case. Note that, unlike the GPS 
case, with human visual navigation 
there is an update to the world model 
(the arrow pointing upward from the 
comparison block). In fact, this is a very 
powerful aspect of human navigation, 
as evidenced by the fact that if you were 
once again blindfolded and dropped 
off in the same spot as previously, you 
would almost immediately know where 
you are once the blindfold is removed. 

What’s different between the first 
time you were here and this time? If 
asked, you might say that you “remem-
bered” what you saw last time — in 
other words, the first time you were 
here, you were continuously updating 
your world model with your sensor data, 
even though you didn’t yet know where 
you were. 

An important point to make is that 
the world model for human visual navi-
gation is a “self-building” world model, 
in the sense that the world model is con-
stantly being updated using the same 
sensor measurements that are used 
to navigate. Our vision is used both to 

FIGURE 4  Generalized navigation framework applied to human visual navigation
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learn our environment and to navigate. 
We cannot download a map of the envi-
ronment into our brains (yet!) — rather, 
we must build up our world model our-
selves.

If we consider the case of human 
visual navigation, at least three key skills 
are required, and all three of these have 
application to automated (non-human) 
forms of navigation using natural sig-
nals like vision. First, the sensor must 
“observe” the right kind of information, 
answering the question “What is inter-
esting about this scene?” While we may 
see a lawn and can pick out individual 
blades of grass, we inherently recognize 
that any individual blade of grass is use-
less to remember; so, we don’t. Humans 
have an uncanny ability to pick out the 
objects that are truly salient. 

Second (and related to the first point), 
we must store information efficiently, in 
a way that captures the most “interest-
ing” characteristics. We remember only 
that which is salient, and we remember 
it in a way that it can be easily recalled. 
Third, especially when you consider 
the massive amount of visual memory 
stored in our brains, humans have a 
very powerful “comparison engine” 
that relates what we see with our visual 
memory. 

If we compare human visual naviga-
tion with something like GPS, we can 
see a number of benefits of this kind of 
natural signal approach. First of all, the 
latter method works in a wide variety of 
situations, including many in which GPS 
does not work (such as deep indoors). 
Also, human vision is not RF-related; 
so, all of the challenges with RF-based 
navigation, such as multipath and inter-
ference, are avoided (unless we consider 
being confused by mirrors as multipa-
th!). Moreover, human vision navigation 
uses very small sensors — our eyes.

However, human navigation has 
significant drawbacks, most notably its 
dependence on our individual familiar-
ity with a locale and our personal data-
bases (memory), which means we can 
get lost. It also depends on the human 
brain (which is very hard to emulate).

Much recent research has sought to 
emulate this human ability by develop-

ing automated ways to navigate using 
vision. Although in many ways not 
as efficient as a human brain, these 
approaches are able to determine abso-
lute or relative position using cameras 
and a variety of algorithms.

One distinct advantage that automat-
ed, computer-based systems have over 
biological systems is their ability to share 
world model information across plat-

forms. It is much easier for computers 
to share a growing database of informa-
tion than for biological systems. (Even 
with our strong ability to communicate, 
it would be impossible for one person to 
share all of the contents of their visual 
memory with another person.)

Better Navigation —  
What Are Our Options?
With this generalized navigation frame-
work in mind, we can now entertain the 
question, “How can we improve our 
ability to navigate?” 

There are four primary options avail-
able to us for improved navigation:
1. Make a better sensor. Sometimes, the 

quality of the measurement coming 
out of the sensor is a limiting factor, 
and in such cases improving sensor 
quality will improve navigation abil-
ity. Additionally, developing a sensor 
that can sense a new type of signal 
can also yield new navigation capa-
bility.

2. Create a new navigation signal. 
Deploying a new “create-the-world” 
type of navigation system can be 
used to fill capability gaps with exist-
ing systems. As mentioned previous-
ly, the world model for such systems 
is often simple, although complica-
tions can arise if the generated sig-
nal is significantly altered by the real 
world.

3. Improve navigation algorithms. Over 
the years, algorithmic improvements 

have yielded improved navigation 
capability. A good example of this is 
the development of efficient carrier-
phase ambiguity algorithms, which 
have enabled real-time, near centi-
meter-level navigation using mea-
surements that have been available 
for many years.

4. Improve our “world model” in order 
to use natural or existing signals. Nat-

ural signals (vision, magnetic field, 
gravity, odor, and so forth) often 
require a complicated world model 
if they are to be used for navigation. 
This may involve large databases, 
as well as the ability to store and 
retrieve relevant data in an efficient 
manner. Additionally, when working 
in the realm of natural signals, the 
need for self-building world models 
comes into play, such that the navi-
gation sensor is used for both navi-
gation and world model (database) 
development.
The first three options described 

above are well known and commonly 
pursued. The vast majority of techni-
cal papers at navigation-related con-
ferences have fallen into these three 
categories. Continuing to pursue these 
three options will likely lead to addi-
tional improvements in navigation, and 
I believe they should continue to be pur-
sued wholeheartedly.

However, the fourth category — 
improving our ability to develop and 
use advanced world models — has not 
received much attention but is an area 
that must be developed in order to take 
advantage of a number of promising 
natural signals for navigation. In my 
opinion, world model development, 
and in particular the development of 
self-building world models, has the 
potential for significant advances over 
the coming years and is the key that 
will open up a wide variety of naviga-

Human navigation has significant drawbacks, most 
notably its dependence on our individual familiarity 
with a locale and our personal databases (memory), 
which means we can get lost. It also depends on the 
human brain (which is very hard to emulate).
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tion approaches not currently being 
exploited.

One such approach that we have been 
working on at the ANT Center is naviga-
tion using variations in the Earth’s mag-
netic field. The remainder of this article 
will summarize some of this work and 
describe how self-building world mod-
els really are essential for effective, wide-
spread use of such techniques.

Magnetic Field  
Navigation
While using Earth’s magnetic field for 
navigation is certainly not a new con-
cept, the use of specific magnetic field 
information mapped to a geographic 
position is growing in popularity. The 
article by J. Wilson et alia (listed in the 

Additional Resources section near the 
end of this article) proposes the use of 
U.S. Geological Survey magnetic field 
maps and magnetic field variations over 
a large area to navigate in an aircraft.  
The algorithm combines the magnetic 
field information with the aircraft’s 
dead-reckoning navigation system to 
determine the aircraft’s position. Flight 
test results compare the dead-reckoning 

solution with the 
magnetically aided 
navigation solution 
to demonstrate the 
navigation solution 
improvement, but 
the position accu-
racy observed was 
on the order of 2.5 
kilometers. 

In two papers 
also cited in Addi-
tional Resources, 
W. Storms applied 
a terrain naviga-
tion algorithm to 
the indoor mag-
netic field environ-

ment and achieved sub-meter accuracy 
positioning results. T. Judd and T. Vu 
tackled an indoor pedestrian naviga-
tion problem, noting interesting corre-
lation in three-axis magnetometer mea-
surements in the indoor environment. 
While attempting to correct heading 
estimation indoors, the magnetic field 
along the route exhibits distinct “fin-
gerprints” at unique locations along the 
route. The resulting fingerprints allow 
correlation of previous magnetic field 
data with measurements during a new 
route to determine if a specific location 
is reached. 

The approach described in this arti-
cle is based in large part on the Ph.D. 
research of Capt. Jeremiah Shockley at 
the ANT Center at AFIT, which focused 

on ground vehicle navigation using 
magnetic field sensors exclusively.

Concept of  
Operation
Initially, a three-axis magnetometer was 
mounted in a convenient location in a 
vehicle and aligned with the body frame, 
careful to avoid large emitters of electro-
magnetic interference (EMI) on board. 

Next, a calibration was performed in 
order to mitigate the magnetic field dis-
tortion caused by the vehicle itself. 

Two main stages follow this initial 
setup:  mapping and navigation. In the 
mapping stage, three-axis magnetic field 
data is collected from the magnetome-
ter at times when the vehicle position is 
known (such as when GPS is available). 
This data is stored along with the cor-
responding positions, creating a “world-
model” or map of the three-dimensional 
magnetic field over the roads that have 
been traversed during this stage.

In the navigation stage, the vehicle 
drives over roads that have previously 
been mapped with the goal of deter-
mining position using only the measure-
ments from the magnetometer. This is 
accomplished by comparing the magne-
tometer measurements with  the previ-
ously generated map using a Gaussian 
likelihood method. This method assigns 
a higher likelihood value to places on 
the map that closely match the collected 
measurements. 

Figure 5 depicts a sample set of nor-
malized likelihoods at a single epoch. 
The sample set of likelihoods at a single 
epoch shows the relationship between a 
single measurement and the entire mag-
netic field map. The likelihood is near 
zero for a large portion of the map, but 
depicts several peaks that are possible 
locations based on the magnetometer 
measurement. 

The peaks are formed as the mag-
netometer measurement approaches a 
potential match in the magnetic field 
map. In this case, there is not a single 
location with a high likelihood. None-
theless, this example reveals only a few 
locations that are possible and many that 
are not. Occasionally, features present in 
the data result in a single large peak.

Field Test
We conducted a field test to demonstrate 
the feasibility of this kind of magnetic 
field navigation approach. Three differ-
ent types of vehicles were used — a 2004 
Chevrolet Avalanche truck, a 2003 Pon-
tiac Aztek sports utility vehicle (SUV), 
and a 2005 Nissan Altima car. Each 
platform represents a different vehicle 

FIGURE 5  A sample set of likelihoods at a single epoch, as a function of 
position on a map (normalized to 1).
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The results demonstrate the potential for very precise 
ground navigation using magnetometers. . . . To be 
able to implement this approach on a national scale 
would require development of a large-scale magnetic 
field map (i.e., a world model). 
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type in order to demonstrate portabil-
ity across vehicles. 

A three-axis, smart digital mag-
netometer able to detect the strength 
and direction of an incident magnetic 
field was mounted in each vehicle on 
a level surface and aligned with the 
body frame as much as possible. A GPS 
receiver collected position information 
for mapping and was also used as a 
truth reference. 

Figure 6 displays the three different 
road environments used in this test. 
The left map in Figure 6 shows the ini-
tial route and consists of a fairly benign 
environment around the Air Force Insti-
tute of Technology (AFIT). The middle 
map covers a suburban neighborhood 
and allows investigation of the ability to 
discern position on parallel roads in a 
similar environment. The right map cov-
ers a large area and shows the relative 
locations of the suburban neighborhood 
and AFIT map areas. The colors are only 

used to highlight the route and possess 
no other meaning. 

The left frame in Figure 7 shows the 
GPS-based vehicle track (thick black 
line) and a “MagNavigate” particle fil-
ter solution (green dots that appear like 
a line). Each green dot represents the 
weighted particle mean. While the sys-
tem appears to track quite well, Figure 7 
does not convey the “along-track”’ error 
in the system. The corresponding posi-
tion error plot at the right of Figure 7 
displays the east, north, and horizontal 
position errors versus time for the same 
AFIT test. 

These results show that the system 
can drift at times, but frequent correc-
tions bring the error down to very low 
values. Similar results are seen in Figures 
8 and 9, which show the accuracy for the 
neighborhood and large routes, respec-
tively, shown in Figure 6.

One important observation is that 
the majority of the error occurs when 

the magnetic field measurements are not 
sufficiently different from adjacent mea-
surements, which results in propagation 
errors. For the results shown here, only 
magnetometer measurements were used. 
In general, the time periods between 
good position fixes is on the order of 
10s of seconds. If these magnetometer 
updates were to be combined with a 
dead-reckoning capability (such as an 
odometer), then the results would be 
significantly improved and would likely 
stay within several meters of the true 
position during the majority of the test.

These results demonstrate the poten-
tial for very precise ground navigation 
using magnetometers. However, the 
test scenario was somewhat unrealistic, 
because it involved intentionally driv-
ing a vehicle over a repeated path — an 
approach that is fine for a research dem-
onstration, but not for large scale imple-
mentation.

To be able to implement this 
approach on a national scale would 
require development of a large-scale 
magnetic field map (i.e., a world model). 
This could be done a couple of ways: 1) 
hire a company to drive on every road 
in the country to collect magnetic field 
information, or 2) develop a self-build-
ing world model approach, in which a 
collaborative magnetic field map is being 
continuously developed and maintained 
incorporating sensor data from cars dur-

FIGURE 7  AFIT route test results
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ing their normal course of operation. —
Option 1 is likely cost-prohibitive, which 
leads us toward the self-building world 
model approach that employs the same 
navigation sensors used when GPS is not 
available.

In order to demonstrate this concept, 
we are developing an iPhone app that is 
able to collect GPS and magnetometer 
data on an iPhone 4S and upload it to 
a central database. We will then install 
this application on the phones of several 
researchers within the ANT Center in 
order to demonstrate the concept of a 
collaborative, self-building magnetic 
field database over the roads in Dayton. 

Although such an approach clearly will 
not cover every road in the Dayton area, 
if expanded to hundreds or thousands of 
users, it would likely cover almost every 
area of interest in a relatively short time. 
We believe that such an approach is the 
only realistic way to develop a large-scale 
magnetic field world model. However, 
once such a world model is developed, 
near GPS-quality navigation would be 
possible without the use of GPS.

Conclusion
The generalized navigation framework 
presented in this article provides a top-
level picture of how all navigation sys-

tems work and points toward several 
approaches at improving our ability to 
navigate. The area that has been most 
neglected, but which is increasingly 
necessary for the practical use of natu-
ral signals for navigation, is the devel-
opment of self-building world models 
in which the same navigation sensor is 
used both for navigation and for world 
model development. A good example 
of this is ground-based magnetic field 
navigation, which shows potential for 
highly accurate navigation but requires 
the development of a collaborative, self-
building magnetic field model for practi-
cal implementation.

FIGURE 9  Large Area Route Test Results
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FIGURE 8  Neighborhood Route Test Results
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