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   GNSS 
Solutions: 

What is “host-based 
processing” of GPS 
signals and how 
does it compare 
to traditional 
systems on a chip 
and software GPS 
approaches?

T he last few years have seen the 
emergence of mobile wire-
less and other devices using a 
host-based GPS architecture, 

in which portions of the software tra-
ditionally executed within the GPS 
chip are now performed in the host 
software. 

This important trend is unfamiliar 
to many even in the GPS industry. For 
certain customers and certain kinds 
of devices, the host-based architecture 
has lower production costs and is much 
more flexible. In other cases the host-
based approach may not work well, and 
designers would be better off using a 
traditional GPS architecture for their 
devices. 

Host-Based versus System on a 
Chip. The architecture of a host-based 
system is best explained by contrasting 
it with the traditional system-on-chip 
(SOC) approach. In SOC architecture, 
the entire GPS system is integrated 
within a single device. The SOC con-
tains three major building blocks: an 
RF tuner block, a baseband processing 
block, and a CPU subsystem that runs 
a complete GPS software application. 

The output of the SOC is position, 
velocity, and time (PVT) data. This 
data is then sent to the host device, and 

is commonly formatted as an NMEA 
message stream. Figure 1 illustrates a 
generic SOC system.

One of the key drawbacks of SOC 
architecture is the complexity of the 
associated silicon design, which largely 
determines the size and cost of the 
chip. The host-based alternative, shown 
in Figure 2, offers a reduced silicon 
complexity that translates into a small-
er, less expensive chip. 

In the host-based approach, the 
on-chip CPU subsystem is eliminated, 
leaving only the RF tuner and the GPS 
baseband processor. However, the host-
based approach is not simply an SOC 
with the CPU removed. 

In the host-based approach the GPS 
baseband processor includes control 
logic functions that would otherwise 
reside in an on-chip CPU. These con-
trol functions enable signal processing 
tasks to be performed without real-
time interaction with the host software. 

In the leanest host-based designs, 
the output of the GPS baseband proces-
sor is not pseudorange measurement 
data, such as you would get  
from an SOC, but rather raw correla-
tion energy results that are streamed to 
the host. The software running on  
the host converts this data to GPS  
measurements.

The host software application 
includes a software module that con-
tains a function for computing GPS 
navigation data. This module is pro-
vided as part of the GPS solution. The 
input to the navigation processing 
module is the GPS measurement data; 
the output is PVT data identical to that 
produced by an SOC.

Figure 3 compares the silicon con-
tent of an SOC chip and a host-based 
GPS chip, drawn approximately to 
scale. 

The three-die combination seen in 
the SOC portion of Figure 3 is typical 
of today’s GPS chip offerings, while a 
single die is possible with a host-based 
chip. The SOC requires a separate die 
for FLASH memory to hold the pro-
gramming code for the GPS. 
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Because FLASH cannot be inte-
grated easily with CMOS logic, this 
will likely remain a separate die for 
some time to come. The SOC also uses 
a separate die for the RF section; again, 
this is typical of GPS chip solutions 
available today. 

Although the CMOS technology 
used for the baseband/CPU die could 
support RF integration, the presence 
of a CPU and external memory may 
present challenges in the area of RF 
interference. The host-based GPS chip 
has no CPU or off-chip memory, which 
simplifies the task of integrating the RF 
and baseband in a single die.

To reduce cost, an SOC could be 
built using mask ROM, which would 
allow the program storage feature to 
be integrated within the CPU die. The 
disadvantage of this approach is that it 
leaves no way to modify program code 
after the chip masks are fabricated. 
Consequently, SOC with mask ROM 
becomes a viable alternative only for 
stable, mature applications where the 
customer is not likely to need changes 
during the development cycle. A large 
unit volume is needed to amortize the 
costs of the custom masks.

Designers evaluating a host-based 
versus SOC solution should also con-
sider that standard RISC processor IP 
cores such as those used in GPS SOCs 
normally are associated with a per-
unit royalty that is not trivial for high 
volume applications, where price pres-
sure has taken the GPS complete bill of 
material below $4.

 The benefit of having less silicon is 
obvious when examining the footprint 
sizes of various commercial GPS chips. 
One of the smallest SOC products 
available measures 7×10 millimeters, 
compared to less than 4×4 millimeters 
for some host-based devices.

Integration. In choosing a GPS 
architecture, cost and size are impor-
tant, but other factors should also be 
taken into account. Low- and medium-
volume projects, or projects with short 
development timelines, may benefit 
from an SOC solution that is more 

costly, but more 
straightforward to 
integrate. 

An example of 
the latter situation 
would be an auton-
omous GPS appli-
cation that will not 
use network aiding 
— or assisted GPS. 
In this case inte-
gration of the SOC 
is elementary: the 
IC generates PVT 
information as an 
output data stream 
and requires few 
if any setup com-
mands. After 
setup, all of the 
data traffic flows in one direction from 
the chip to the host CPU. 

Figure 4 illustrates the data flow for 
a host-based GPS system. A number of 
software layers work together to cre-
ate the equivalence of an SOC solution 
driving NMEA data to a COM port. 

An assumed requirement of this 
approach is that the application should 
be unaware of the host-based architec-

ture. To achieve this, a virtual COM 
port driver is created. This enables the 
application to open a COM port as it 
would for a physical device. 

When the GPS port is opened, the 
virtual driver invokes the GPS appli-
cation, calling the necessary library 
functions within the GPS layer. Once 
the GPS receiver is up and running, the 
GPS software library delivers NMEA 

FIGURE 1  System-On-Chip Architecture

FIGURE 2  Host-Based GPS Architecture

FIGURE 3  Silicon Comparison of Host-Based GPS and SOC GPS
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only application to an AGPS applica-
tion is larger because the designer must 
for the first time introduce vendor-
supplied software. Figure 6 illustrates 

this transition: on the left is the SOC 
architecture for autonomous-only 
application and on the right the SOC 
architecture for an AGPS application.

As shown in the illustration, the 
architecture for the SOC case closely 
resembles the architecture for the case 
of host-based GPS. The main difference 
lies in the vendor’s internal partition-
ing of functionality between the SOC 
and the software it supplies to the host. 
In either case the application and plat-
form interfaces are the same.

When considering software inte-
gration, a designer should determine at 
the outset whether the application will 
need to work with a network server, 
either initially or in subsequent revi-
sions of the product. If the answer is 
“yes,” the initial integration effort of 
a host-based approach may offer the 
advantage of paving the way for easy 
addition of the assistance data channel 
in the future. If an application is purely 
autonomous, the relative simplicity 
of SOC integration may offer a better 
approach.

messages to the virtual COM driver, 
which distributes them to the applica-
tion.

 Alternatively, if the application can 
be modified, it could directly access 
positioning information from the GPS 
library through an application pro-
gramming interface (API).

The GPS software must of course 
communicate with the host-based GPS 
IC — first to set up and control the IC, 
and second to receive the correlation 
results that will be converted to mea-
surements and, ultimately, positions. 
This requires a duplex communication 
channel to the IC. 

Because the nature of the physical 
communication will vary from plat-
form to platform, the GPS software is 
normally created in a generic fashion. 
A hardware abstraction layer is used to 
interconnect the GPS functions to the 
COM driver, which physically relays 
the data. This is an open layer of soft-
ware that allows the GPS chip vendor 
to supply its proprietary software in a 
compiled library suitable for all plat-
forms.

The integration of the GPS soft-
ware supplied by the vendor into the 
customer application includes the  
following:
•	 Create the hardware abstraction 

layer. This is a thin layer of 

functions that serve as the “glue” 
between the software library 
supplied by the chip vendor and the 
platform driver that controls the 
universal asynchronous receiver 
transmitter (UART, a component 
that handles asynchronous serial 
communication).

•	 Provide the vendor with porting 
information so that the vendor 
can create a GPS software library 
in compiled form. Included in the 
information would be the make 
and model of compiler and the 
preferred build options to obtain 
a library that successfully links 
into the existing host software 
build. Achieving a successful port 
requires close cooperation between 
the vendor and the customer.

•	 If existing applications are to be 
used, then a virtual COM driver 
is supplied. Some windows-based 
operating systems include this 
capability inherently; for example, 
the Microsoft Intermediate Driver 
Environment for Windows Mobile 
5. In other cases, the chip vendor 
may supply a virtual COM driver 
that can be customized for the 
platform.

•	 If a virtual COM driver is not 
required, an application can 
interface with the GPS chip 
through its positioning APIs.
With these 

steps completed, 
the system per-
forms in a manner 
similar to an SOC 
implementation, 
and any differences 
are invisible to the 
applications run-
ning on the host.

Assisted 
GPS. The integra-
tion landscape 
changes consider-
ably when assisted 
GPS (AGPS) enters 
the picture. AGPS 
applications use a 
messaging protocol 

to communicate to a network server. 
The communication channel typically 
is either a wireless IP channel (user 
plane) or a control channel in a wire-
less network (control plane).

Many customers prefer that the 
GPS chip provider supply the neces-
sary protocol software. In the case of a 
host-based GPS system, this protocol 
software is part of the functionality 
provided in the GPS software library. 
For the user plane option, the software 
picture illustrated in Figure 5 resembles 
that of the autonomous-only case.

The added functionality is support-
ed through the components that con-
trol messaging between the GPS soft-
ware library and the AGPS server. In 
the user plane these messages flow over 
TCP/IP. As mentioned earlier, to allow 
the vendor’s GPS software library to 
work in any platform, the networking 
communication functions are generic 
(that is, applicable to any platform). 

A network abstraction layer is cre-
ated by the customer to tie the specific 
TCP/IP interfaces into the GPS library. 
A one-to-one correspondence nor-
mally exists between the GPS functions 
and the TCP library; so, the layer is 
again a “thin” implementation of func-
tionality to open and close TCP sockets 
and stream data to a network address.

In the case of an SOC implementa-
tion, the jump from an autonomous-
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FIGURE 4  Software Architecture for Host-Based 
GPS

FIGURE 5  Software Architecture for Assisted GPS in a Host-Based System

FIGURE 6  Software Architecture for Autonomous and Assisted GPS in an SOC System
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Data samples are then transferred 
to the host over a high-speed interface. 
Next, these samples are placed into 
high-speed RAM within the host, 
where they are made available to the 
signal processing algorithms. All GPS 
signal processing tasks, including cor-
relation and matched filter functions, 
are run in the host.

Several vendors have announced 
commercially available software GPS 
solutions, but this architecture has not 
been broadly adapted. Novel challenges 
face designers in applying the current 
software GPS solutions, including the 
immensity of GPS signal-processing 
requirements, portability, and data 
flows. 

Hundreds of MIPS are needed just 
to perform the basic GPS operations 
that bring the performance of software 
GPS into parity with traditional GPS 
performance metrics. Meanwhile, the 
latest GPS hardware solutions (both 

SOC and host-based) are capable of 
performing large matched filtering 
operations in real time and without 
the substantial CPU power required by 
software GPS.

A second issue is that current 
software GPS solutions tend to be non-
portable from platform to platform, 
both from hardware and software per-
spectives. The requirement for a high-
speed serial interface, for example, 
immediately narrows the available 
interfacing options. A typical interface 
is SDIO, commonly used in the PC 
world but rarely available in mobile 
wireless devices. The ubiquitous and 
highly requested UART interface is not 
an option, due to multi-megabit band-
width requirements. 

On the host side, to deal with the 
incoming data, hardware support is 
needed for data transfer into the host-
side frame buffer. A direct memory 
access (DMA) controller, if available, 

fulfills this need, but adds to the cost of 
implementation.

From a software perspective, the 
real time demands of the signal pro-
cessing tasks require that the solution 
run in a multi-thread environment in 
order to guarantee the necessary cycles 
to the software process to keep up with 
incoming data. Intuitively one would 
assume that a software GPS solution is 
less expensive. However, current semi-
conductor technology allows a large 
number of digital processing gates to 
be packed into a small area. More-
over, cost and size are often as much 
driven by interfacing requirements (for 
example, pin count) as by the core pro-
cessing area.

One advantage of a software GPS 
solution is the upgradeability of the 
signal processing components that are 
“baked” into a host-based or SOC solu-
tion. However, a further word of cau-
tion is needed here: the migration to 

Another thing to keep in mind 
for AGPS applications is that handset 
makers normally do not develop proto-
col stacks themselves, but source them 
from cellular chip suppliers as part of a 
complete mobile platform. GPS proto-
col layers are included in this bundle; 
so, a growing trend has emerged in 
which chip suppliers pre-integrate all 
the GPS software inside their plat-
forms. 

This software integration helps 
to reduce costs and time to market 
because it frees OEMs from having 
to conduct qualification tests and 
interoperability trials for which they 
would otherwise be responsible. Many 
chip makers also include a host-based 
GPS vendor as part of their solutions 
because the effort of integrating a 
third-party library is negligible com-
pared to the scope of the complete GPS 
software inside the handset.

Upgradability. Another important 
element for integration is the ease or 
difficulty of upgrading software. 
Such upgrades may be required 
during any phase of the develop-
ment process. In the integration 
phases, improvements devel-
oped by the chip vendor to meet 
unique customer needs or perceptions 
drive the upgrades. 

In the late stages of development, 
designers may implement upgrades in 
order to correct bugs or deficiencies 
discovered in interoperability or field 
tests. These issues can arise very late in 
the process, sometimes on the eve of a 
product launch. Finally, once a product 
is deployed, upgrades may be required 
to fix latent bugs that were unknown at 
the time the product was launched.

In an SOC solution, FLASH mem-

ory provides an upgrade path. Never-
theless, because the FLASH cannot be 
removed, the host software must incor-
porate a FLASH loader feature to sup-
port upgrading software in the actual 
product. This is an important soft-
ware component, best received from 
the SOC vendor, then ported to the 
customer application. Moreover, the 
loader represents an item of vendor-
provided software that will be present 
even in the purely autonomous case.

Upgrading software in the end user 
product can be even more complex, 
as the process of receiving, installing, 
and upgrading FLASH must be seam-
less and easily carried out by users. 
This can be done technically, but it 
requires exhaustive planning and 
software development. If a manufac-
turer must support field upgrades of 
FLASH, the SOC solution loses much 
of its simplicity. 

In the host-based solution, the 
software is part of the customer appli-

cation and is upgraded through the 
same mechanisms used by customers 
to upgrade other software packages 
in the device. GPS improvements and 
bug fixes can be pulled through during 
normal product maintenance releases 
without the complexity introduced by 
a FLASH loader.

Some SOC vendors offer mask 
ROM versions of their product in order 
to eliminate the extra cost of the sepa-
rate FLASH memory die. In this case 
the upgrade path is long and expensive. 

To effect a software change, the com-
pany that fabricates the ICs must create 
new mask layer(s) for several metal 
layers to be able to change code. Next, 
new wafers must be processed and 
parts packaged. The “compile” time for 
a code change in this process is several 
months. 

Mask ROM is appropriate for high-
ly stable applications that are governed 
by mature specifications that seldom 
change (for example, Bluetooth devices 
that comply with a mature industry 
specification). GPS has few universal 
performance benchmarks, and indus-
try standards are in the early phases, 
changing frequently. 

User needs and expectations for 
GPS continue to evolve, especially in 
the case of cellular handsets, where 
widespread use of location applica-
tions is only just beginning. As a result, 
mask ROM may not be a good choice 
for these emerging markets. In more 
mature industries, such as automo-
tive where the GPS software has a 
track record and has been stable for 
an extended period, SOC vendors may 
carry specific mask ROM versions of 
their chips, targeted for specific cus-
tomers. This of course leads to added 
costs, because different customers can-
not share silicon wafers.

Software GPS. Host-based GPS 
is sometimes confused with software 

GPS. In fact, the two architec-
tures are quite different. As 
shown in Figure 7, in a software 
GPS architecture, all of the 
GPS signal processing is per-
formed in the host in addition 

to the navigation functions that are 
performed in the host in a host-based 
architecture.

This partitioning of the GPS pro-
cessing results in a radically different 
design for the GPS IC. The hardware 
components of the “software only” 
solution include an RF section, identi-
cal to that required in the host-based 
GPS approach. The output of the tuner, 
rather than being further processed by 
signal processing hardware, is digitized 
and placed into a frame buffer. 
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FIGURE 7.  Software GPS Architecture

A growing trend has emerged in which 
chip suppliers pre-integrate all the 
GPS software inside their platforms.
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Galileo and other GNSS systems is not 
straightforward. The signal processing 
requirements for Galileo, for example, 
are up to 16 times that of GPS due to 
the longer C/A code, the BOC modula-
tion, and the presence of data and pilot 
channels.  So a software GPS solution 
is not necessarily upgradable to Gali-
leo, it depends on the capabilities of the 
hardware on which the software solu-
tion is implemented.

Conclusion. System on a Chip 
(SOC) architecture remains the easiest 
to implement, but with the most hard-
ware required. Software GPS is useful 
for R&D but is not currently a viable 
commercial architecture: it requires 
multi-megabits/s of bandwidth, hun-
dreds of MIPS, a high degree of plat-
form dependence, and, ironically, often 

requires more hardware than host-
based GPS.

The choice between host-based GPS 
and SOC comes down to a company’s 
target implementation and volumes. 
For autonomous-only implementa-
tions SOC architecture is significantly 
easier to implement, but the difference 
in integration complexity shrinks for 
assisted-GPS. 

In any event, if a manufacturer is 
building roughly 100,000 GPS devices 
per year, SOC GPS is the best choice, 
because of the ease of integration. The 
cost savings from host-based GPS 
will probably not justify the overhead 
involved in the tight host-based inte-
gration. 

For production targets around 
one million devices per year, however, 

host-based GPS is easily the best choice 
— the cost savings in one year will far 
exceed the overhead involved in the 
tight integration, with the added benefit 
of fewer parts, smaller GPS footprint, 
built-in support for A-GPS, and a more 
manageable software upgrade path.
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An avionics-grade IMU has its main 
application in attitude and heading 
reference systems (AHRS) that provide 
accurate roll, pitch, and heading for 
commercial and military aircraft. It 
contains gyros in the 0.1 degree/hour 
category whose technology can be 
lower-cost RLG, FOG or spinning 
mass dry-tuned gyros (DTG). Avi-
onics-grade IMU prices range from 
$20,000 to $50,000, depending on the 
quality and cost of the inertial sensors. 

A tactical-grade IMU is typically 
designed for use in a weapon such as 
a missile or guided bomb. It needs to 
navigate the weapon for only a few 
minutes at most and, consequently, can 
use less expensive inertial sensors. 

This category of IMU is designed 
to be small, light, and inexpensive, 
with a typical price in the range $5,000 
to $20,000. Tactical-grade IMUs use 
gyros having 1 to 10 degrees/hour bias 
and accelerometers having around 1 to 
5 milli-g biases. Gyro random walk is 
usually in the range 0.05 to 0.2 degrees/
root-hour, depending on the gyro tech-
nology. 

With the advent of micro-electro-
mechanical system (MEMS) inertial 
sensors — miniature sensors mass-
produced out of silicon or quartz using 
integrated circuit production methods, 
a new category of IMU called the low-
cost IMU or commercial grade IMU has 
begun to appear. 

The MEMS gyros in these IMUs are 
designed for large-scale commercial 
markets such as the automobile indus-
try (for yaw stabilization and skid con-
trol) and have biases on the order of 0.1 
degrees/second. They tend to be quite 
noisy, with random walk on the order 
of several degrees per root-hour. 

MEMS accelerometers are likewise 
mass-produced for large markets such 
as air bag deployment sensors in auto-
mobiles; consequently they are low cost 
and relatively inaccurate. The typical 
commercial-grade MEMS IMU price is 
in the range $500 to $2,000.

GNSS/INS Integration. As shown 
in Figure 1, a GNSS-aided INS incor-
porates the INS (IMU plus inertial 

navigator mechanization) embed-
ded in a closed error regulation loop 
that includes a Kalman filter and an 
error controller. The Kalman filter is 
designed to estimate the errors in the 
INS solution and the contributing 
sources of this error, which include the 
dominant inertial sensor errors and 
aiding sensor errors. 

The Kalman filter is able to observe 
these errors in measurements con-
structed as the differences between 
elements of the inertial navigation 
solution and corresponding aiding sen-
sor data, including GNSS. The error 
controller then converts the estimated 
INS errors into corrections to the inte-
gration processes in the inertial navi-
gator mechanization and applies these 
periodically. It also adjusts the Kalman 
filter’s estimated errors to reflect the 
INS correction.

The Kalman filter typically contains 
models for the gyro and accelerometer 
biases, and possibly other inertial sen-
sor errors, such as scale factors and 
misalignments, if these are anticipated 
to prove significant. Consequently, the 
GNSS-aided INS provides dynamic 
calibration of the IMU errors, which 
allows the GNSS-aided INS to achieve 
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a better level of performance that an 
unaided INS would be capable of. 

As the result of this integrated 
design, the IMU in a GNSS-aided INS 
can be of lower quality and, hence, 
cost less than the IMU in an unaided 
INS to achieve a particular level of per-
formance. For example, a navigation-
grade IMU having 0.01 degree/hour 
ring laser gyros in a free-inertial INS 
following a good ground alignment 
can provide satisfactory roll-pitch-
heading at the 0.05 degree RMS level. 
The same roll-pitch-heading accuracy 
can be derived from a GNSS-aided INS 
containing a tactical-grade IMU with 
1 degree/hour gyros and costing one 
tenth of the navigation grade IMU. The 
difference is that a free-inertial INS is 
completely autonomous following a 
ground alignment, whereas a GNSS-
aided INS requires ongoing GNSS aid-
ing with few interruptions to achieve 
this performance. 

In typical survey missions, depen-
dency on GNSS aiding poses no signifi-
cant hardship, and as a result a GNSS-
aided INS may be a better choice for 
reasons of cost, size, weight, and power 
consumption. The caveat here, how-
ever, concerns the inertial sensor noise, 

FIGURE 1  GNSS-aided INS architecture and signal flow
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What are the 
important 
considerations when 
selecting the type 
and quality of IMU 
for integration with 
GNSS?

The key objective in choosing 
an inertial measurement unit 
(IMU) for a GNSS-aided iner-
tial navigation system (INS) is 

to obtain the right trade-off between 
performance and cost of the integrated 
system in its intended application. 

The type of data and the desired 
accuracies of those data comprise the 
performance attributes of a GNSS-
aided INS of interest for a particular 
application. For example, a land-vehi-
cle navigation application may require 
continuous positioning during periods 
of poor GNSS coverage, such as in an 
urban canyon environment. So, here 
the key performance attribute is posi-
tion accuracy during multiple GNSS 
outages. 

Another example: an aerial pho-
togrammetry application requires 
highly accurate position and orienta-
tion angles in order to generate the 
exterior orientation parameters of each 
image. In this case, GNSS coverage 
and, hence, position accuracy is usually 
not a problem. Instead, the key perfor-
mance attribute is orientation accuracy 
during normal aircraft dynamics on a 
survey mission.

Inertial Cost Fundamentals. An 
IMU contains three gyros and three 
accelerometers for the purpose of 
measuring vectors of angular rate and 
specific force (inertial acceleration and 
gravity) that an IMU experiences. An 
INS uses these inertial data plus an ini-
tial alignment state to solve Newton’s 
equations of rotational and transla-
tional motion on the earth and thereby 
compute a position and orientation 
solution. 

The cost of an IMU depends on the 
class of inertial sensors that it contains. 
IMUs are typically categorized accord-
ing to their intended applications and 
gyro quality expressed in terms of 
gyro bias in units of degrees per hour. 
A secondary performance measure is 
the gyro random walk expressed in 

degrees per root-hour, which is the 
integrated gyro random noise. (Accel-
erometer quality is assumed to be 
commensurate with gyro quality for its 
intended application, and is therefore 
not explicitly mentioned in an IMU 
categorization.) 

A navigation-grade IMU is capable 
of operating in an INS with a free–
inertial position drift (that is, the posi-
tion drift in the absence of any exter-
nal corrections) on the order of one 
nautical mile per hour or 0.5 meters 
per second after a good initial ground 
alignment. To meet these performance 
specifications, such an IMU necessar-
ily contains gyros having better than 
0.01 degree/hour biases and precise 
accelerometers having better than 100 
micro-g (1 micro-g equals one mil-
lionth of gravitational force) biases. 
Gyro random walk is typically 0.002 
degrees/root-hour or better. 

The prevailing gyro technology 
that can deliver this accuracy in a cost-
effective manner is the ring-laser gyro 
(RLG), although some fiber-optic gyros 
(FOGs) are also capable of competing 
with RLG performance and cost. The 
typical cost of a navigation-grade IMU 
is in the range $50,000 to $100,000. 
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in particular the gyro random walk, 
because a Kalman filter cannot cali-
brate or suppress broadband noise. 

Consequently an IMU with fairly 
high gyro random walk can fail in 
a GNSS-aided INS application 
even if its inertial sensor biases 
are reasonably small. The high 
broadband inertial sensor noise 
from commercial-grade MEMS 
IMUs has to date limited their 
application to lower accuracy attitude 
measurement applications.

Choosing an IMU. Selection of an 
appropriate IMU as part of a design 
process is in part a value engineering 
exercise. It requires the skills of a navi-
gation analyst who can understand the 
relationship between various inertial 
sensor errors and the resultant inertial 
navigation errors, as well as the degree 
to which a Kalman filter aided with 
GNSS data of a certain quality and fre-
quency can estimate these errors. 

In order to establish the maximum 
IMU errors that an application can 
tolerate, the IMU selection process 

typically involves some simulations 
of candidate missions that will 
incorporate a GNSS-aided INS. 
Modern simulation tools allow the 
navigation analyst to try out different 

combinations of inertial sensors and 
Kalman filter designs. Often this 
includes an exploration of the effect 
of vehicle dynamics on the resulting 
performance of a candidate design. 

Vehicle accelerations enhance the 
observability of some INS errors in the 
Kalman filter of a GNSS-aided INS. In 
particular, heading error is normally 
weakly observable in a stationary 
or benignly dynamic GNSS-aided 
INS, with the heading error being 
approximately proportional to the gyro 
bias. Consequently a fairly expensive 
IMU with small gyro biases may be 
needed to achieve an accurate heading. 

If the vehicle accelerates 
periodically in its intended mission, 
then the Kalman filter’s heading error 
observability improves significantly, 
and the GNSS-aided INS is able 
to control the heading error with 
significantly less dependence on the 
gyro biases. This allows the use of a 
lower cost IMU to achieve the same 
desired heading accuracy. 

Let’s take aerial photogrammetry as 
an example. The vehicle is an aircraft 
carrying a camera or line scanner. A 
series of parallel flight lines during 
which the images are captured, 
connected by 180-degree turns, 
comprises a typical photo-mission 
trajectory. The centripetal accelerations 
during these turns increases the 
observability of errors, which allows 
the GNSS-aided INS to achieve 
excellent roll, pitch, and heading 
accuracy with a less expensive tactical-
grade IMU.

Once a candidate IMU is selected, 
the next step is to test the IMU in 
a prototype GNSS-aided INS. This 

is usually the last and most costly 
step in the design process, because it 
involves real hardware being tested on 
a real vehicle. This is especially so, for 
instance, if the vehicle is an airplane 

and the application is aerial 
surveying that also involves an 
expensive sensor such as a large-
format camera or LIDAR. 

As part of due diligence in 
the system design process, the 

candidate IMU should be subjected 
to statistical analysis to verify its 
published specifications. The typical 
tools for this analysis are a thermal 
chamber, a rate table, and statistical 
analysis software. The thermal 
chamber provides accurate control 
of temperature and temperature rate 
for these tests. The rate table ensures 
accurate rotational rates and angular 
changes. 

The thermal chamber and rate table 
are usually integrated into a single 
test device. The IMU is subjected to 
stationary drift tests and rotational 
tests at various temperatures and 
possibly different temperature 
gradients. The resulting data collected 
from these tests are then reduced 
to representations of statistical 
performance such as bias standard 
deviation, in-run bias variation, and 
random noise. 

If the previous design and 
simulation analysis was done 
correctly, and the candidate IMU 
meets its published specifications, 
then the vehicle test stage should 
be a verification of the expected 
performance.
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