
30 InsideGNSS 	 m a y / j u n e 2 0 0 7 	 www.insidegnss www.insidegnss.com 	 m a y / j u n e 2 0 0 7 	 InsideGNSS	 31

 GNSS
Solutions:

What is “host-based
processing” of GPS
signals and how
does it compare
to traditional
systems on a chip
and software GPS
approaches?

T he last few years have seen the
emergence of mobile wire-
less and other devices using a
host-based GPS architecture,

in which portions of the software tra-
ditionally executed within the GPS
chip are now performed in the host
software.

This important trend is unfamiliar
to many even in the GPS industry. For
certain customers and certain kinds
of devices, the host-based architecture
has lower production costs and is much
more flexible. In other cases the host-
based approach may not work well, and
designers would be better off using a
traditional GPS architecture for their
devices.

Host-Based versus System on a
Chip. The architecture of a host-based
system is best explained by contrasting
it with the traditional system-on-chip
(SOC) approach. In SOC architecture,
the entire GPS system is integrated
within a single device. The SOC con-
tains three major building blocks: an
RF tuner block, a baseband processing
block, and a CPU subsystem that runs
a complete GPS software application.

The output of the SOC is position,
velocity, and time (PVT) data. This
data is then sent to the host device, and

is commonly formatted as an NMEA
message stream. Figure 1 illustrates a
generic SOC system.

One of the key drawbacks of SOC
architecture is the complexity of the
associated silicon design, which largely
determines the size and cost of the
chip. The host-based alternative, shown
in Figure 2, offers a reduced silicon
complexity that translates into a small-
er, less expensive chip.

In the host-based approach, the
on-chip CPU subsystem is eliminated,
leaving only the RF tuner and the GPS
baseband processor. However, the host-
based approach is not simply an SOC
with the CPU removed.

In the host-based approach the GPS
baseband processor includes control
logic functions that would otherwise
reside in an on-chip CPU. These con-
trol functions enable signal processing
tasks to be performed without real-
time interaction with the host software.

In the leanest host-based designs,
the output of the GPS baseband proces-
sor is not pseudorange measurement
data, such as you would get
from an SOC, but rather raw correla-
tion energy results that are streamed to
the host. The software running on
the host converts this data to GPS
measurements.

The host software application
includes a software module that con-
tains a function for computing GPS
navigation data. This module is pro-
vided as part of the GPS solution. The
input to the navigation processing
module is the GPS measurement data;
the output is PVT data identical to that
produced by an SOC.

Figure 3 compares the silicon con-
tent of an SOC chip and a host-based
GPS chip, drawn approximately to
scale.

The three-die combination seen in
the SOC portion of Figure 3 is typical
of today’s GPS chip offerings, while a
single die is possible with a host-based
chip. The SOC requires a separate die
for FLASH memory to hold the pro-
gramming code for the GPS.

Host-based
processing

and choosing
inertial
sensors

“GNSS Solutions” is a
regular column featuring

questions and answers
about technical aspects of
GNSS. Readers are invited
to send their questions to
the columnists, Professor
Gérard Lachapelle and Dr.

Mark Petovello, Department
of Geomatics Engineering,

University of Calgary,
who will find experts to

answer them. Their e-mail
addresses can be found with

their biographies at the
conclusion of the column.

Because FLASH cannot be inte-
grated easily with CMOS logic, this
will likely remain a separate die for
some time to come. The SOC also uses
a separate die for the RF section; again,
this is typical of GPS chip solutions
available today.

Although the CMOS technology
used for the baseband/CPU die could
support RF integration, the presence
of a CPU and external memory may
present challenges in the area of RF
interference. The host-based GPS chip
has no CPU or off-chip memory, which
simplifies the task of integrating the RF
and baseband in a single die.

To reduce cost, an SOC could be
built using mask ROM, which would
allow the program storage feature to
be integrated within the CPU die. The
disadvantage of this approach is that it
leaves no way to modify program code
after the chip masks are fabricated.
Consequently, SOC with mask ROM
becomes a viable alternative only for
stable, mature applications where the
customer is not likely to need changes
during the development cycle. A large
unit volume is needed to amortize the
costs of the custom masks.

Designers evaluating a host-based
versus SOC solution should also con-
sider that standard RISC processor IP
cores such as those used in GPS SOCs
normally are associated with a per-
unit royalty that is not trivial for high
volume applications, where price pres-
sure has taken the GPS complete bill of
material below $4.

 The benefit of having less silicon is
obvious when examining the footprint
sizes of various commercial GPS chips.
One of the smallest SOC products
available measures 7×10 millimeters,
compared to less than 4×4 millimeters
for some host-based devices.

Integration. In choosing a GPS
architecture, cost and size are impor-
tant, but other factors should also be
taken into account. Low- and medium-
volume projects, or projects with short
development timelines, may benefit
from an SOC solution that is more

costly, but more
straightforward to
integrate.

An example of
the latter situation
would be an auton-
omous GPS appli-
cation that will not
use network aiding
— or assisted GPS.
In this case inte-
gration of the SOC
is elementary: the
IC generates PVT
information as an
output data stream
and requires few
if any setup com-
mands. After
setup, all of the
data traffic flows in one direction from
the chip to the host CPU.

Figure 4 illustrates the data flow for
a host-based GPS system. A number of
software layers work together to cre-
ate the equivalence of an SOC solution
driving NMEA data to a COM port.

An assumed requirement of this
approach is that the application should
be unaware of the host-based architec-

ture. To achieve this, a virtual COM
port driver is created. This enables the
application to open a COM port as it
would for a physical device.

When the GPS port is opened, the
virtual driver invokes the GPS appli-
cation, calling the necessary library
functions within the GPS layer. Once
the GPS receiver is up and running, the
GPS software library delivers NMEA

FIGURE 1 System-On-Chip Architecture

FIGURE 2 Host-Based GPS Architecture

FIGURE 3 Silicon Comparison of Host-Based GPS and SOC GPS

32 InsideGNSS 	 m a y / j u n e 2 0 0 7 	 www.insidegnss www.insidegnss.com 	 m a y / j u n e 2 0 0 7 	 InsideGNSS	 33

only application to an AGPS applica-
tion is larger because the designer must
for the first time introduce vendor-
supplied software. Figure 6 illustrates

this transition: on the left is the SOC
architecture for autonomous-only
application and on the right the SOC
architecture for an AGPS application.

As shown in the illustration, the
architecture for the SOC case closely
resembles the architecture for the case
of host-based GPS. The main difference
lies in the vendor’s internal partition-
ing of functionality between the SOC
and the software it supplies to the host.
In either case the application and plat-
form interfaces are the same.

When considering software inte-
gration, a designer should determine at
the outset whether the application will
need to work with a network server,
either initially or in subsequent revi-
sions of the product. If the answer is
“yes,” the initial integration effort of
a host-based approach may offer the
advantage of paving the way for easy
addition of the assistance data channel
in the future. If an application is purely
autonomous, the relative simplicity
of SOC integration may offer a better
approach.

messages to the virtual COM driver,
which distributes them to the applica-
tion.

 Alternatively, if the application can
be modified, it could directly access
positioning information from the GPS
library through an application pro-
gramming interface (API).

The GPS software must of course
communicate with the host-based GPS
IC — first to set up and control the IC,
and second to receive the correlation
results that will be converted to mea-
surements and, ultimately, positions.
This requires a duplex communication
channel to the IC.

Because the nature of the physical
communication will vary from plat-
form to platform, the GPS software is
normally created in a generic fashion.
A hardware abstraction layer is used to
interconnect the GPS functions to the
COM driver, which physically relays
the data. This is an open layer of soft-
ware that allows the GPS chip vendor
to supply its proprietary software in a
compiled library suitable for all plat-
forms.

The integration of the GPS soft-
ware supplied by the vendor into the
customer application includes the
following:
•	 Create the hardware abstraction

layer. This is a thin layer of

functions that serve as the “glue”
between the software library
supplied by the chip vendor and the
platform driver that controls the
universal asynchronous receiver
transmitter (UART, a component
that handles asynchronous serial
communication).

•	 Provide the vendor with porting
information so that the vendor
can create a GPS software library
in compiled form. Included in the
information would be the make
and model of compiler and the
preferred build options to obtain
a library that successfully links
into the existing host software
build. Achieving a successful port
requires close cooperation between
the vendor and the customer.

•	 If existing applications are to be
used, then a virtual COM driver
is supplied. Some windows-based
operating systems include this
capability inherently; for example,
the Microsoft Intermediate Driver
Environment for Windows Mobile
5. In other cases, the chip vendor
may supply a virtual COM driver
that can be customized for the
platform.

•	 If a virtual COM driver is not
required, an application can
interface with the GPS chip
through its positioning APIs.
With these

steps completed,
the system per-
forms in a manner
similar to an SOC
implementation,
and any differences
are invisible to the
applications run-
ning on the host.

Assisted
GPS. The integra-
tion landscape
changes consider-
ably when assisted
GPS (AGPS) enters
the picture. AGPS
applications use a
messaging protocol

to communicate to a network server.
The communication channel typically
is either a wireless IP channel (user
plane) or a control channel in a wire-
less network (control plane).

Many customers prefer that the
GPS chip provider supply the neces-
sary protocol software. In the case of a
host-based GPS system, this protocol
software is part of the functionality
provided in the GPS software library.
For the user plane option, the software
picture illustrated in Figure 5 resembles
that of the autonomous-only case.

The added functionality is support-
ed through the components that con-
trol messaging between the GPS soft-
ware library and the AGPS server. In
the user plane these messages flow over
TCP/IP. As mentioned earlier, to allow
the vendor’s GPS software library to
work in any platform, the networking
communication functions are generic
(that is, applicable to any platform).

A network abstraction layer is cre-
ated by the customer to tie the specific
TCP/IP interfaces into the GPS library.
A one-to-one correspondence nor-
mally exists between the GPS functions
and the TCP library; so, the layer is
again a “thin” implementation of func-
tionality to open and close TCP sockets
and stream data to a network address.

In the case of an SOC implementa-
tion, the jump from an autonomous-

GNSS SOLUTIONS

FIGURE 4 Software Architecture for Host-Based
GPS

FIGURE 5 Software Architecture for Assisted GPS in a Host-Based System

FIGURE 6 Software Architecture for Autonomous and Assisted GPS in an SOC System

34 InsideGNSS 	 m a y / j u n e 2 0 0 7 	 www.insidegnss www.insidegnss.com 	 m a y / j u n e 2 0 0 7 	 InsideGNSS	 35

Data samples are then transferred
to the host over a high-speed interface.
Next, these samples are placed into
high-speed RAM within the host,
where they are made available to the
signal processing algorithms. All GPS
signal processing tasks, including cor-
relation and matched filter functions,
are run in the host.

Several vendors have announced
commercially available software GPS
solutions, but this architecture has not
been broadly adapted. Novel challenges
face designers in applying the current
software GPS solutions, including the
immensity of GPS signal-processing
requirements, portability, and data
flows.

Hundreds of MIPS are needed just
to perform the basic GPS operations
that bring the performance of software
GPS into parity with traditional GPS
performance metrics. Meanwhile, the
latest GPS hardware solutions (both

SOC and host-based) are capable of
performing large matched filtering
operations in real time and without
the substantial CPU power required by
software GPS.

A second issue is that current
software GPS solutions tend to be non-
portable from platform to platform,
both from hardware and software per-
spectives. The requirement for a high-
speed serial interface, for example,
immediately narrows the available
interfacing options. A typical interface
is SDIO, commonly used in the PC
world but rarely available in mobile
wireless devices. The ubiquitous and
highly requested UART interface is not
an option, due to multi-megabit band-
width requirements.

On the host side, to deal with the
incoming data, hardware support is
needed for data transfer into the host-
side frame buffer. A direct memory
access (DMA) controller, if available,

fulfills this need, but adds to the cost of
implementation.

From a software perspective, the
real time demands of the signal pro-
cessing tasks require that the solution
run in a multi-thread environment in
order to guarantee the necessary cycles
to the software process to keep up with
incoming data. Intuitively one would
assume that a software GPS solution is
less expensive. However, current semi-
conductor technology allows a large
number of digital processing gates to
be packed into a small area. More-
over, cost and size are often as much
driven by interfacing requirements (for
example, pin count) as by the core pro-
cessing area.

One advantage of a software GPS
solution is the upgradeability of the
signal processing components that are
“baked” into a host-based or SOC solu-
tion. However, a further word of cau-
tion is needed here: the migration to

Another thing to keep in mind
for AGPS applications is that handset
makers normally do not develop proto-
col stacks themselves, but source them
from cellular chip suppliers as part of a
complete mobile platform. GPS proto-
col layers are included in this bundle;
so, a growing trend has emerged in
which chip suppliers pre-integrate all
the GPS software inside their plat-
forms.

This software integration helps
to reduce costs and time to market
because it frees OEMs from having
to conduct qualification tests and
interoperability trials for which they
would otherwise be responsible. Many
chip makers also include a host-based
GPS vendor as part of their solutions
because the effort of integrating a
third-party library is negligible com-
pared to the scope of the complete GPS
software inside the handset.

Upgradability. Another important
element for integration is the ease or
difficulty of upgrading software.
Such upgrades may be required
during any phase of the develop-
ment process. In the integration
phases, improvements devel-
oped by the chip vendor to meet
unique customer needs or perceptions
drive the upgrades.

In the late stages of development,
designers may implement upgrades in
order to correct bugs or deficiencies
discovered in interoperability or field
tests. These issues can arise very late in
the process, sometimes on the eve of a
product launch. Finally, once a product
is deployed, upgrades may be required
to fix latent bugs that were unknown at
the time the product was launched.

In an SOC solution, FLASH mem-

ory provides an upgrade path. Never-
theless, because the FLASH cannot be
removed, the host software must incor-
porate a FLASH loader feature to sup-
port upgrading software in the actual
product. This is an important soft-
ware component, best received from
the SOC vendor, then ported to the
customer application. Moreover, the
loader represents an item of vendor-
provided software that will be present
even in the purely autonomous case.

Upgrading software in the end user
product can be even more complex,
as the process of receiving, installing,
and upgrading FLASH must be seam-
less and easily carried out by users.
This can be done technically, but it
requires exhaustive planning and
software development. If a manufac-
turer must support field upgrades of
FLASH, the SOC solution loses much
of its simplicity.

In the host-based solution, the
software is part of the customer appli-

cation and is upgraded through the
same mechanisms used by customers
to upgrade other software packages
in the device. GPS improvements and
bug fixes can be pulled through during
normal product maintenance releases
without the complexity introduced by
a FLASH loader.

Some SOC vendors offer mask
ROM versions of their product in order
to eliminate the extra cost of the sepa-
rate FLASH memory die. In this case
the upgrade path is long and expensive.

To effect a software change, the com-
pany that fabricates the ICs must create
new mask layer(s) for several metal
layers to be able to change code. Next,
new wafers must be processed and
parts packaged. The “compile” time for
a code change in this process is several
months.

Mask ROM is appropriate for high-
ly stable applications that are governed
by mature specifications that seldom
change (for example, Bluetooth devices
that comply with a mature industry
specification). GPS has few universal
performance benchmarks, and indus-
try standards are in the early phases,
changing frequently.

User needs and expectations for
GPS continue to evolve, especially in
the case of cellular handsets, where
widespread use of location applica-
tions is only just beginning. As a result,
mask ROM may not be a good choice
for these emerging markets. In more
mature industries, such as automo-
tive where the GPS software has a
track record and has been stable for
an extended period, SOC vendors may
carry specific mask ROM versions of
their chips, targeted for specific cus-
tomers. This of course leads to added
costs, because different customers can-
not share silicon wafers.

Software GPS. Host-based GPS
is sometimes confused with software

GPS. In fact, the two architec-
tures are quite different. As
shown in Figure 7, in a software
GPS architecture, all of the
GPS signal processing is per-
formed in the host in addition

to the navigation functions that are
performed in the host in a host-based
architecture.

This partitioning of the GPS pro-
cessing results in a radically different
design for the GPS IC. The hardware
components of the “software only”
solution include an RF section, identi-
cal to that required in the host-based
GPS approach. The output of the tuner,
rather than being further processed by
signal processing hardware, is digitized
and placed into a frame buffer.

GNSS SOLUTIONS

FIGURE 7. Software GPS Architecture

A growing trend has emerged in which
chip suppliers pre-integrate all the
GPS software inside their platforms.

36 InsideGNSS 	 m a y / j u n e 2 0 0 7 	 www.insidegnss www.insidegnss.com 	 m a y / j u n e 2 0 0 7 	 InsideGNSS	 37

Galileo and other GNSS systems is not
straightforward. The signal processing
requirements for Galileo, for example,
are up to 16 times that of GPS due to
the longer C/A code, the BOC modula-
tion, and the presence of data and pilot
channels. So a software GPS solution
is not necessarily upgradable to Gali-
leo, it depends on the capabilities of the
hardware on which the software solu-
tion is implemented.

Conclusion. System on a Chip
(SOC) architecture remains the easiest
to implement, but with the most hard-
ware required. Software GPS is useful
for R&D but is not currently a viable
commercial architecture: it requires
multi-megabits/s of bandwidth, hun-
dreds of MIPS, a high degree of plat-
form dependence, and, ironically, often

requires more hardware than host-
based GPS.

The choice between host-based GPS
and SOC comes down to a company’s
target implementation and volumes.
For autonomous-only implementa-
tions SOC architecture is significantly
easier to implement, but the difference
in integration complexity shrinks for
assisted-GPS.

In any event, if a manufacturer is
building roughly 100,000 GPS devices
per year, SOC GPS is the best choice,
because of the ease of integration. The
cost savings from host-based GPS
will probably not justify the overhead
involved in the tight host-based inte-
gration.

For production targets around
one million devices per year, however,

host-based GPS is easily the best choice
— the cost savings in one year will far
exceed the overhead involved in the
tight integration, with the added benefit
of fewer parts, smaller GPS footprint,
built-in support for A-GPS, and a more
manageable software upgrade path.

CHARLIE ABRAHAM
Charlie Abraham is vice
president for engineer-
ing at Global Locate, Inc.
where he is responsible
for the technical archi-
tecture of GPS chipsets
and software. Previously

Abraham worked at Trimble, Ashtech, Magellan,
and Hughes Aircraft. He holds a master of engi-
neering degree from the University of Southern
California. Abraham has more than 100 issued or
pending patents in the field of GPS.

An avionics-grade IMU has its main
application in attitude and heading
reference systems (AHRS) that provide
accurate roll, pitch, and heading for
commercial and military aircraft. It
contains gyros in the 0.1 degree/hour
category whose technology can be
lower-cost RLG, FOG or spinning
mass dry-tuned gyros (DTG). Avi-
onics-grade IMU prices range from
$20,000 to $50,000, depending on the
quality and cost of the inertial sensors.

A tactical-grade IMU is typically
designed for use in a weapon such as
a missile or guided bomb. It needs to
navigate the weapon for only a few
minutes at most and, consequently, can
use less expensive inertial sensors.

This category of IMU is designed
to be small, light, and inexpensive,
with a typical price in the range $5,000
to $20,000. Tactical-grade IMUs use
gyros having 1 to 10 degrees/hour bias
and accelerometers having around 1 to
5 milli-g biases. Gyro random walk is
usually in the range 0.05 to 0.2 degrees/
root-hour, depending on the gyro tech-
nology.

With the advent of micro-electro-
mechanical system (MEMS) inertial
sensors — miniature sensors mass-
produced out of silicon or quartz using
integrated circuit production methods,
a new category of IMU called the low-
cost IMU or commercial grade IMU has
begun to appear.

The MEMS gyros in these IMUs are
designed for large-scale commercial
markets such as the automobile indus-
try (for yaw stabilization and skid con-
trol) and have biases on the order of 0.1
degrees/second. They tend to be quite
noisy, with random walk on the order
of several degrees per root-hour.

MEMS accelerometers are likewise
mass-produced for large markets such
as air bag deployment sensors in auto-
mobiles; consequently they are low cost
and relatively inaccurate. The typical
commercial-grade MEMS IMU price is
in the range $500 to $2,000.

GNSS/INS Integration. As shown
in Figure 1, a GNSS-aided INS incor-
porates the INS (IMU plus inertial

navigator mechanization) embed-
ded in a closed error regulation loop
that includes a Kalman filter and an
error controller. The Kalman filter is
designed to estimate the errors in the
INS solution and the contributing
sources of this error, which include the
dominant inertial sensor errors and
aiding sensor errors.

The Kalman filter is able to observe
these errors in measurements con-
structed as the differences between
elements of the inertial navigation
solution and corresponding aiding sen-
sor data, including GNSS. The error
controller then converts the estimated
INS errors into corrections to the inte-
gration processes in the inertial navi-
gator mechanization and applies these
periodically. It also adjusts the Kalman
filter’s estimated errors to reflect the
INS correction.

The Kalman filter typically contains
models for the gyro and accelerometer
biases, and possibly other inertial sen-
sor errors, such as scale factors and
misalignments, if these are anticipated
to prove significant. Consequently, the
GNSS-aided INS provides dynamic
calibration of the IMU errors, which
allows the GNSS-aided INS to achieve

GNSS SOLUTIONS

a better level of performance that an
unaided INS would be capable of.

As the result of this integrated
design, the IMU in a GNSS-aided INS
can be of lower quality and, hence,
cost less than the IMU in an unaided
INS to achieve a particular level of per-
formance. For example, a navigation-
grade IMU having 0.01 degree/hour
ring laser gyros in a free-inertial INS
following a good ground alignment
can provide satisfactory roll-pitch-
heading at the 0.05 degree RMS level.
The same roll-pitch-heading accuracy
can be derived from a GNSS-aided INS
containing a tactical-grade IMU with
1 degree/hour gyros and costing one
tenth of the navigation grade IMU. The
difference is that a free-inertial INS is
completely autonomous following a
ground alignment, whereas a GNSS-
aided INS requires ongoing GNSS aid-
ing with few interruptions to achieve
this performance.

In typical survey missions, depen-
dency on GNSS aiding poses no signifi-
cant hardship, and as a result a GNSS-
aided INS may be a better choice for
reasons of cost, size, weight, and power
consumption. The caveat here, how-
ever, concerns the inertial sensor noise,

FIGURE 1 GNSS-aided INS architecture and signal flow

Inertial Navigator
Inertial data

Navigator
correction

Error controller

Error state
correction Estimated

errors

Kalman filter
Aiding

data

Other aiding
sensors

GNSS receiver
Observables

Blended
navigation

solution

Error
regulation

loop

IMU

What are the
important
considerations when
selecting the type
and quality of IMU
for integration with
GNSS?

The key objective in choosing
an inertial measurement unit
(IMU) for a GNSS-aided iner-
tial navigation system (INS) is

to obtain the right trade-off between
performance and cost of the integrated
system in its intended application.

The type of data and the desired
accuracies of those data comprise the
performance attributes of a GNSS-
aided INS of interest for a particular
application. For example, a land-vehi-
cle navigation application may require
continuous positioning during periods
of poor GNSS coverage, such as in an
urban canyon environment. So, here
the key performance attribute is posi-
tion accuracy during multiple GNSS
outages.

Another example: an aerial pho-
togrammetry application requires
highly accurate position and orienta-
tion angles in order to generate the
exterior orientation parameters of each
image. In this case, GNSS coverage
and, hence, position accuracy is usually
not a problem. Instead, the key perfor-
mance attribute is orientation accuracy
during normal aircraft dynamics on a
survey mission.

Inertial Cost Fundamentals. An
IMU contains three gyros and three
accelerometers for the purpose of
measuring vectors of angular rate and
specific force (inertial acceleration and
gravity) that an IMU experiences. An
INS uses these inertial data plus an ini-
tial alignment state to solve Newton’s
equations of rotational and transla-
tional motion on the earth and thereby
compute a position and orientation
solution.

The cost of an IMU depends on the
class of inertial sensors that it contains.
IMUs are typically categorized accord-
ing to their intended applications and
gyro quality expressed in terms of
gyro bias in units of degrees per hour.
A secondary performance measure is
the gyro random walk expressed in

degrees per root-hour, which is the
integrated gyro random noise. (Accel-
erometer quality is assumed to be
commensurate with gyro quality for its
intended application, and is therefore
not explicitly mentioned in an IMU
categorization.)

A navigation-grade IMU is capable
of operating in an INS with a free–
inertial position drift (that is, the posi-
tion drift in the absence of any exter-
nal corrections) on the order of one
nautical mile per hour or 0.5 meters
per second after a good initial ground
alignment. To meet these performance
specifications, such an IMU necessar-
ily contains gyros having better than
0.01 degree/hour biases and precise
accelerometers having better than 100
micro-g (1 micro-g equals one mil-
lionth of gravitational force) biases.
Gyro random walk is typically 0.002
degrees/root-hour or better.

The prevailing gyro technology
that can deliver this accuracy in a cost-
effective manner is the ring-laser gyro
(RLG), although some fiber-optic gyros
(FOGs) are also capable of competing
with RLG performance and cost. The
typical cost of a navigation-grade IMU
is in the range $50,000 to $100,000.

38 InsideGNSS 	 m a y / j u n e 2 0 0 7 	 www.insidegnss

in particular the gyro random walk,
because a Kalman filter cannot cali-
brate or suppress broadband noise.

Consequently an IMU with fairly
high gyro random walk can fail in
a GNSS-aided INS application
even if its inertial sensor biases
are reasonably small. The high
broadband inertial sensor noise
from commercial-grade MEMS
IMUs has to date limited their
application to lower accuracy attitude
measurement applications.

Choosing an IMU. Selection of an
appropriate IMU as part of a design
process is in part a value engineering
exercise. It requires the skills of a navi-
gation analyst who can understand the
relationship between various inertial
sensor errors and the resultant inertial
navigation errors, as well as the degree
to which a Kalman filter aided with
GNSS data of a certain quality and fre-
quency can estimate these errors.

In order to establish the maximum
IMU errors that an application can
tolerate, the IMU selection process

typically involves some simulations
of candidate missions that will
incorporate a GNSS-aided INS.
Modern simulation tools allow the
navigation analyst to try out different

combinations of inertial sensors and
Kalman filter designs. Often this
includes an exploration of the effect
of vehicle dynamics on the resulting
performance of a candidate design.

Vehicle accelerations enhance the
observability of some INS errors in the
Kalman filter of a GNSS-aided INS. In
particular, heading error is normally
weakly observable in a stationary
or benignly dynamic GNSS-aided
INS, with the heading error being
approximately proportional to the gyro
bias. Consequently a fairly expensive
IMU with small gyro biases may be
needed to achieve an accurate heading.

If the vehicle accelerates
periodically in its intended mission,
then the Kalman filter’s heading error
observability improves significantly,
and the GNSS-aided INS is able
to control the heading error with
significantly less dependence on the
gyro biases. This allows the use of a
lower cost IMU to achieve the same
desired heading accuracy.

Let’s take aerial photogrammetry as
an example. The vehicle is an aircraft
carrying a camera or line scanner. A
series of parallel flight lines during
which the images are captured,
connected by 180-degree turns,
comprises a typical photo-mission
trajectory. The centripetal accelerations
during these turns increases the
observability of errors, which allows
the GNSS-aided INS to achieve
excellent roll, pitch, and heading
accuracy with a less expensive tactical-
grade IMU.

Once a candidate IMU is selected,
the next step is to test the IMU in
a prototype GNSS-aided INS. This

is usually the last and most costly
step in the design process, because it
involves real hardware being tested on
a real vehicle. This is especially so, for
instance, if the vehicle is an airplane

and the application is aerial
surveying that also involves an
expensive sensor such as a large-
format camera or LIDAR.

As part of due diligence in
the system design process, the

candidate IMU should be subjected
to statistical analysis to verify its
published specifications. The typical
tools for this analysis are a thermal
chamber, a rate table, and statistical
analysis software. The thermal
chamber provides accurate control
of temperature and temperature rate
for these tests. The rate table ensures
accurate rotational rates and angular
changes.

The thermal chamber and rate table
are usually integrated into a single
test device. The IMU is subjected to
stationary drift tests and rotational
tests at various temperatures and
possibly different temperature
gradients. The resulting data collected
from these tests are then reduced
to representations of statistical
performance such as bias standard
deviation, in-run bias variation, and
random noise.

If the previous design and
simulation analysis was done
correctly, and the candidate IMU
meets its published specifications,
then the vehicle test stage should
be a verification of the expected
performance.

Bruno Scherzinger

Dr. Bruno Scherzinger
is the chief technol-
ogy officer at Applanix
Corporation in Toronto,
Canada, which he co-
founded in 1991. He is

responsible for advanced navigation technology
development and the core navigation technol-
ogy in the Applanix product line.

Mark Petovello is a Senior
Research Engineer in the
Department of Geomatics
Engineering at the University of
Calgary. He has been actively
involved in many aspects of
positioning and navigation
since 1997 including GNSS
algorithm development, inertial
navigation, sensor integration,
and software development.

Email: mpetovello@geomatics.
ucalgary.ca

Professor Gérard Lachapelle
holds a CRC/iCORE Chair
in Wireless Location in the
Department of Geomatics
Engineering at the University of
Calgary. He has been involved
with GNSS since 1980 and has
received numerous awards for
his contributions in the area of
differential kinematic GPS and
indoor location.

Email: lachapel@geomatics.
ucalgary.ca

Selection of an appropriate IMU as
part of a design process is in part a
value engineering exercise.

