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Knowledge of carrier-to-noise 
ratio (CNR) can be of great 
value in the context of GNSS. 

In addition to determining 
the relative signal to noise strength, CNR 
information can assist various stages of 
signal tracking in a GNSS receiver. For 
example, CNR measurements may serve 
as status indicators of the code and car-
rier tracking loops by detecting the pres-
ence of loss-of-lock events. A receiver 
may also incorporate CNR estimates 
in its tracking stages for increasing the 
accuracy of the estimated synchroniza-
tion parameters, enhancing multipath 
mitigation techniques, or as a triggering 

mechanism for switching among track-
ing algorithms to optimize performance 
in various CNR ranges. 

 The multitude of possible appli-
cations for CNR measurements is far 
from being exhausted. In order to effi-
ciently serve existing and future CNR-
based applications, receiver designs that 
maximize estimation accuracy become 
paramount. Whilst the technical litera-
ture contains plenty of paradigms, many 
GNSS-specific estimation methods are 
limited by sensitivity to noise power 
or perform poorly performance in low 
CNR conditions.

Situations in which higher estima-
tion accuracy is desired may lead to 
techniques that require higher compu-
tational complexity. Acknowledging this 

trade-off, we propose a new CNR esti-
mation technique called level-crossing-
rate estimation (LCRE), which exhibits 
optimal performance under very noisy 
conditions.

Statistical Characterization 
of Signals 
One of the main functions that a GNSS 
receiver performs is the cross-correla-
tion of the received signal with a stored 
reference in order to match up the same 
pseudorandom noise (PRN) code. This 
process also incorporates a certain esti-
mate of Doppler frequency and code 
delay. 

Assuming the signal has been trans-
mitted over an additive white Gaussian 
noise (AWGN) channel, we can model 
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the sampled output of the cross-correlation function as

where Ts is the sampling period; Eb stands for the data bit ener-
gy, and a0 is the amplitude attenuation. Further,  
represents the auto-correlation function (ACF), defined here as 
the cross-correlation between the modulation waveform used 
in the receiver and the modulation waveform used for the ref-
erence signal, stored in the receiver. Moreover,  and  are 
the code and frequency estimation errors, equal to  and 

, respectively; φ0 is the carrier phase of the channel path, 
and v(n) the complex noise term of the double-sided power 
spectral density . 

The shape of the ACF depends on the modulation scheme 
used on the transmitter side. However, if the receiver uses a dif-
ferent reference waveform, the correlation shape is also affected. 
For future GNSS signals, the composite binary offset carrier 
(CBOC) modulation scheme has been selected for mass-market 
applications. Here, we specifically use the CBOC (‘-’) imple-
mentation since it is the most probable candidate for future 
Galileo Open Service (OS) pilot signals. 

CBOC consists of a superposition of two sine BOC wave-
forms: a sine BOC(1,1) and a sine BOC(6,1) component. 
Depending on whether we add or subtract the BOC compo-
nents, we have a CBOC(‘+’) or CBOC(‘-’) implementation, 
respectively. 

Although the majority of existing work on the subject 
assumes both the transmitted and reference signals to be CBOC 
modulated, recent studies show that processing the CBOC sig-
nal with a sine BOC(1,1) reduces the processing complexity and 
can be advantageous in cases of limited-bandwidth receivers. 
For this reason, in our study we assume the paired usage of a 
CBOC transmitter with a sine BOC receiver.

If we denote by x1 and xQ the real and imaginary samples of 
xR, after one millisecond of integration they clearly follow the 
statistics of the Gaussian noise term; therefore, both x1 and xQ 
are Gaussian distributed with variance . Moreover, we are 
able to categorize samples into two cases: (1) peak point (PP), 
for samples located within chip from the estimated code delay, 
because we assume the samples are situated on the main peak 
of the correlation function, and (2) outside peak point (OPP), 
for samples located outside two-chip interval.

Figure 1 illustrates examples of PPs and OPPs on the real 
part of the coherent cross-correlation function (CCF) in an 
additive white Gaussian noise (AWGN) channel. 

In a straightforward way, we statistically characterize the 
real and imaginary samples based on whether they correspond 
to a PP (indicated with the subscript p) or an OPP (indicated 
with the subscript o) as
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where  represents the equivalent bit energy, defined as 
.

Typically, a receiver applies both coherent and non-coher-
ent averaging to the output of the CCF for better robustness 
against noise. If we denote the coherent integration time by Nc 
(in milliseconds), we can express the real and imaginary parts 
of the coherent correlation function as

While y1 and yQ remain Gaussian distributed, their statistics 
are now defined as

If for statistical simplicity we assume that the squared enve-
lopes are used for the formation of the non-coherent decision 
variable, we can write the output as

Because in equation (5) we have the sum of the squares of 
Gaussian variables, it follows that z has a chi-square distribu-
tion, either centrally or non-centrally distributed, depending 
on whether we have a PP or an OPP. The statistics for these 
two cases are 

FIGURE 1  Example of peak points (PPs) and outside peak points (OPPs) on 
the real part of the coherently-averaged CCF in AWGN channel.
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where χ2(ψ2, σ2, d) denotes the chi-square distribution with d = 
2Nnc degrees of freedom, underlying Gaussians of variance

, 
and non-centrality parameter ψ2. If ψ2= 0, we have a central 
chi-square distribution and, if ψ2 ≠ 0, we have a non-centrally 
distributed chi-square. The cumulative distribution functions 
(CDFs) for PP and OPP cases are

where QM is the generalized Marcum Q function.

Derivation of the Level-Crossing-Rate 
Estimator
Traditionally, the level crossing rate (LCR) information has 
been widely used in the field of wireless communications for 
optimizing various receiver parameters, such as modulation 
format, frame length, and automatic gain control (AGC). LCR 
information is also used for computing the average error per-
formance of beamforming receivers and estimating the maxi-
mum Doppler frequencies or the speed of a mobile receiver.

In the context of satellite-based positioning, usage of LCR 
information has been rather sparse and only in connection with 
fading channel characterization and Doppler spread estima-
tion. Despite this, the concept of associating LCR with accurate 
CNR estimation is, according to our knowledge, completely 
new.

In earlier work (the paper by D. Skournetou listed in the 
Additional Resources section near the end of this article), we 
have demonstrated that the LCR at a certain level of a non-
coherently averaged CCF can be indicative of the CNR used 
to characterize a post-processed signal. For example the LCR 
has been used as a switch to show whether the signal is below 
or above a certain CNR level. 

Starting from results in the article by D. Skournetou and 
based on the theoretical model described previously, we devel-
oped a method that uses the LCR information in order to pro-
duce CNR estimates. 

We denote LCRdown and LCRup as the number of times a 
level β is crossed downwards or upwards, respectively. Then, 
the total number of crossings can be found as 

LCRE & CNR
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In order to define the number of downward and upward 
crossings, we denote by z(k) as the sample of the non-coherent 
averaged CCF, and Ktot = NsNBW as the total number of samples 
situated within a correlation window of length W chips, and an 
oversampling factor of Ns, measured as the number of samples 
per BOC interval. NB is the BOC modulation order, where, 
for example, a signal is modulated using a multiplexed BOC 
(MBOC) scheme, then NB=12. We may then describe as

where “card” denotes the cardinality of a set (i.e., the number 
of elements that belong in this set).

Figure 2 shows examples of upward (UC) and downward 
(DC) crossings. Note that two upward and two downward 
crossings occur on level   β=0.2 and result in a total of four 
crossings, such that LCRtot(0.2) = 4.

Starting from equation (9), we redefine downward and 
upward LCRs in terms of probabilities and equivalent CDFs. 
For example, the probability z(k) to be less or equal to a level β 
can be found by computing the CDF of the random variable 
z(k) at β.

Because the random variable corresponds to a sample of the 
non-coherent CCF, we distinguish among four cases. Table 1 
describes the level crossing rate function for each of these.

In the first case (C1), we have a PP followed by a PP, illus-
trated in Figure 1 by the blue portion of the curve. The number 
of such points can be found by counting the number of samples 
within chip from the maximum peak, τmax, in the CCF, such 
that we have 2NsNB + 1 points.

The second and third cases are described by (C2) when 
an OPP is followed by a PP, as illustrated in Figure 1 by the 

0.8

0.6

0.4

0.2

0

No
n−

co
he

re
nt

ly
 av

er
ag

ed
 CC

F

AWGN channel, CNR = 35 dBHz

2nd DC

Crossing level 

2nd UC

1st DC

1st UC

-50 0 50
Time axis (samples)

FIGURE 2 Example of downward and upward crossings, ß = 0.2, Nc = 10 ms, 
Nnc = 2 blocks



42      	 InsideGNSS 	 s e p t e m b e r  2 0 1 0 	 www.insidegnss.com

LCRE & CNR

left edge of the blue 
curve, and (C3) PP 
is followed by an 
OPP, as illustrated 
by the right edge of 
the blue curve.

Finally, in the 
fourth case (C4), 
where an OPP is 
followed by an OPP, 

both variables are characterized by the same CDF, highlighted by the red curve in 
Figure 1. The total number of points in this case, is Ktot − 2NsNB − 1.

The number of level crossings over the whole correlation window length can be 
obtained by adding the partial LCRs given in Table 1 as

If we assume that the bit energy and channel’s amplitude attenuation are known 
or estimated at the receiver, then  depends only on the unknown noise power 
and the CNR can be computed as 

where Bc is the code epoch bandwidth equal to 1 kHz and (Bc)dBHz = 30.
In order to estimate CNR, we compute   at level β = median (z(k)), k = 1,... Ktot 

for different trial values of CNR. We compute the crossing level at the median because 
we empirically found that it varies according to the CNR. Although we identify no 

formulation of the exact dependency, 
we do not need it for the derivation of 
estimator.

To calculate the partial LCRs defined 
in Table 1, we use the CDF output for 
each chosen level.

Look-Up Table Reduces 
Computing Time
In order to reduce the complexity of the 
algorithm, we compute the CDFs for dif-
ferent level crossings and store the val-
ues in a look-up table. After the median 
of the CCF is computed, we compare 
it with those in the look-up table and 
choose the CDF output with the best 
level crossing match.

After calculating the total number 
of crossings using equation (10), we esti-
mate CNR as

In other words, the estimated CNR is 
indicated by the trial CNR value result-
ing in the maximum number of level 
crossings. Figure 3 shows an example the 

  function computed for a single-
path AWGN channel with a CNR equal 
to 40 dBHz.

We recall that LCRE is based on the 
assumption that the bit energy (Eb) and 
the signal’s amplitude attenuation (a0) 
are known at the receiver side. When 
this is not the case, a two-dimensional 
search of the look-up table should be 
performed, computing the total num-
ber of level crossings first, for different 
values of the product , and then for 
the different CNRs.

CNR Estimators
Typical CNR estimators for GNSS sig-
nals are based on the first- or higher 
order moments of the CCF output. 
Among the least computationally 
demanding, we find the first- and sec-
ond-order moment (1stOM and 2ndOM, 
respectively) based estimators with 
which to estimate CNR, using the equa-
tions shown in Table 2. Starting from the 
earlier theoretical derivations, we define 
the mean and variance of OPPs and PPs, 
respectively, as

Case z(k) z(k+1)

C1 PP PP

C2 OPP PP

C3 PP OPP

C4 OPP OPP

TABLE 1.  LCR functions for all point combinations.

CNR  
Estimators

Estimated CNR [dBHz}

LCRE

1stOM

2ndOM

NWPR

TABLE 2.  List of CNR estimators.
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For ergodic processes, the statistic 
average is equal to the time average. 
However, since we usually have only 
one observation of the correlation 
function, we typically have only one, or 
very few, PPs and several OPPs. Thus, 
we have

where KOPP ≥ 1 is the number of OPPs 
used to estimate the mean.

Another popular CNR estimator is 
based on the ratio of the signal’s wide-
band power (WBP) to its narrowband 
power (NBP), known as the narrow-
band-wideband-power-ratio (NWPR) 
estimator. The formulas with which 
NWPR method estimates CNR can also 
be found in Table 2.

For a fair comparison of the CNR 
estimators, we do not use any smoothing 

factor in the NWPR method, because 
the rest of the methods produce a CNR 
estimate using a single instance of CCF. 
This means that only one value of NP is 
available for computation of the CNR; 
however, in practice actual receivers may 
use an average of NP over few hundreds 
of instances in order to produce one 
estimate.

Comparing Estimators’ 
Performance
In this section, we compare the simula-
tion results based on performance of the 
four CNR estimators: 1stOM, 2ndOM, 
the proposed LCRE, and NWPR. In 
order to create a fair comparison, we 
use the same number of OPPs in the 
moment-based estimators as in our 
LCRE method, described by KOPP = Ktot 
– 2NsNB – 1.

The simulations were carried out 
assuming an infinite bandwidth, a 
rectangular pulse shaping filter, and 
an oversampling factor of Ns = 4, where 
each BOC interval contained four sam-
ples. The BOC order was NB = 12, and we 
set the time-bin equal to 1/(NsNB) mil-
lisecond, which is the interval between 
samples of the correlation function. The 
smaller the interval is, the more bins 
along the correlation function we have. 
Moreover, the output of the correlation 
function is coherently averaged using 
Nc = 10 milliseconds, followed by two 

blocks of non-coherent integration (Nnc 
= 2).

Unless we have single-path chan-
nel, the number of paths is uniformly 
distributed between Lmin and Lmax. We 
assume the path separation between 
successive paths at any time instance to 
be uniformly distributed between 0 and 
0.35 chips, simulating closely-spaced 
paths, typically found in indoor and 
densely populated urban scenarios.

Finally, under the condition of fad-
ing channels we used Nakagami-m type, 
where the Nakagami m-factor was equal 
to 0.8.

In cases where we deviate from these 
values or needed additional parameters 
to describe the simulation setup, we 
note this in the title and/or caption of 
the figures. As the performance met-
ric we use the root mean square error 
(RMSE) between the true and the esti-
mated CNR, computed over 500 random 
channel realizations.

Figure 4 illustrates the RMSE values 
versus the true CNR when the channel 
is AWGN. LCRE performs significantly 
better in the region of very low CNRs, 
below 25 dBHz, while NWPR and the 
moment-based estimators achieve small 
estimation errors when the true CNR is 
25 dBHz or higher.

In this scenario the NWPR method 
performs the best for CNR greater than 
50 dBHz. Because our emphasis is on 
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low to high CNR levels, the result for the 
very high CNR range, up to 65 dBHz, 
was not included. 

Figure 5 shows the performance of 
the estimators for different correlation 
window lengths in AWGN channel, 
and when the true CNR is 25 dBHz. 
In this case the performance of LCRE 
improves as the correlation window 
length increases; however, the window 
length does not significantly affect any 
of the four estimators. 

Figure 6 shows how the size of scan-
ning the correlation function in the 
time domain affects the estimators 
where CNR = 35 dBHz. At this CNR 

level, the performance of moment-based 
estimators and NWPR deteriorates with 
decreasing temporal resolution, while 
LCRE maintains an almost constant 
performance. 

In Figure 7, we see the performance 
of the estimators in the fading channel 
when the maximum number of paths is 
four. Here, the performance of LCRE 
is also almost constant over the CNR 
range, while the rest of the estimators 
are affected by the presence of multi-
path, even under good CNR conditions. 
Figure 8 depicts RMSE versus the overs-
ampling factor in the single-path fading 
channel, with CNR equal to 20 dBHz. 

At this low CNR value, no significant 
effects are observed.

Figures 9 and 10 illustrate the effect 
of the maximum number of channel 
paths in Nakagami-m channel for CNR 
equal to 20 and 35 dBHz, respectively. 
As expected, for very low CNRs the 
effect of channel paths is less evident 
than for higher CNRs, when signal can 
be distinguished from channel noise. 
Again, the LCRE performs consistently, 
regardless of the maximum number of 
paths, for CNR = 35 dBHz. The per-
formance of the other three estimators 
deteriorates with increasing paths.

The effects of finite bandwidth (BW) 

LCRE & CNR

FIGURE 5 RMSE vs. correlation window length (W) in single-path AWGN 
and CNR = 25 dBHz.
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FIGURE 6 RMSE versus time step in single-path AWGN channel and CNR = 
20 dBHz.
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FIGURE 7 RMSE of CNR estimation vs. true CNR in Nakagami channel.
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FIGURE 8 RMSE versus oversampling factor (Ns) in Nakagami channel and 
CNR = 25 dBHz.
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FIGURE 9 RMSE versus maximum number of channel paths in Nakagami 
channel and CNR = 20 dBHz.

0 2 4 6 8
0

1

2

3

4

5

6

7

Max. no. of channel paths

RM
SE

 [d
B]

RMSE vs. Lmax, CNR = 20 dBHz

 

 

1stOM
2ndOM
LCRE
NWPR

FIGURE 10 RMSE versus maximum number of channel paths in Nakagami 
channel and CNR = 35 dBHz.

FIGURE 11 RMSE of CNR estimation vs. true CNR in Nakagami channel and 
BW = 8 MHz.
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FIGURE 12 RMSE of CNR estimation versus true CNR in Nakagami channel 
and BW = 24.552 MHz.
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are depicted in Figures 11 and 12. In the 
first case, we used BW = 8 MHz and a 
Butterworth filter with 0.1 decibel loss 
in pass-band, 40-decibel attenuation in 
stop-band, and a transition bandwidth 
equal to BW/2. Comparison of Figure 
11 with Figure 7 indicates that only the 
LCRE method was negatively affected by 
the limited bandwidth case, while the rest 
of the methods remained unaffected.

Nonetheless, LCRE performs best 
only in the very low CNR region, below 
20 dBHz, while for regions from low to 
high CNR values, moment-based and 
NWPR methods perform the best. In the 

second case illustrated in Figure 12, we 
used receiver bandwidth BW = 24.552 
MHz, which is the same as that used for 
the transmission of Galileo E1 signal. In 
this case, LCRE clearly performs better 
than other methods, except where CNR 
= 25 dBHz. Moreover, we notice that 
unlike the LCRE method, the moment-
based and NWPR methods perform bet-
ter at 8 MHz bandwidth than at 24.552 
MHz for CNR greater than 25 dBHz.

Summary and Conclusions
We introduce and derive a new method 
for estimating CNR, called Level Cross-

ing Rate-based-Estimator (LCRE), by 
exploiting statistical characteristics of 
correlation samples. We compare the 
LCRE method with first- and second-
based moments, as well as with the well-
known Narrowband-Wideband Power 
Ratio method.

The performance comparison covers 
both cases of Additive White Gaussian 
Noise (AWGN) and fading multipath 
channels. The former is used for inves-
tigating the maximum achievable per-
formance, while the latter is chosen for 
the representation of more realistic sce-
narios.

LCRE & CNR
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Results show the proposed LCRE 
method performs considerably better 
than the other three methods under very 
low CNR conditions, ranging from 5 to 
20 dBHz or higher, depending on the 
scenario. However, the improved per-
formance of LCRE is counterbalanced 
by its higher computational complexity, 
mitigated by the implementation of a 
look-up table.

In cases where low computational 
complexity is required, the NWPR 
method provides the best solution. 
Although the algorithm designer must 
decide how much computational com-
plexity to trade for improved accuracy, 
the use of look-up tables reduces the 
LCRE execution speed.
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