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The Indian Regional Naviga-
tion Satellite System (IRNSS)] 
is designed as a stand-alone 

regional navigation system with a pri-
mary service area extending up to 1,500 
kilometers from the Indian land mass. 
Finland lies north of 60°N latitude more 
than 5,000 kilometers away from India, 
as shown in Figure 1. 

Three IRNSS satellites are currently 
operational: two inclined geosynchro-
nous orbit (IGSO) satellites, PRN 1 (1A), 
PRN 2 (1B); and one geostationary satel-
lite, PRN 3 (1C) launched on October 16, 
2014. Seven satellites will comprise the 
full constellation, which is expected to 
be complete in 2015. 

In October 2014, the Indian Space 
Research Organization (ISRO), which 
has responsibility for the IRNSS pro-
gram, published an interface control 
document for the IRNSS standard posi-
tioning service. Soon after, researchers 
from the Department of Navigation 
and Positioning of the Finnish Geodetic 
Institute (FGI) successfully acquired,  
tracked and decoded the naviga-
tion data offered on the L5 frequency 
(1176.45 MHz) from all three available 
IRNSS satellites. The IGSO satellites 
were used in a multi-GNSS position-
ing solution along with GPS satellites. 
(The IRNSS GEO satellite PRN 3 (1C) 
had its “ALERT” flag set; so, its navi-
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In the FGI-GSRx stored RF samples 
at intermediate frequency (IF) are pro-
cessed as shown in the receiver block 
diagram of Figure 3. The acquisition 
engine performs fast Fourier trans-
form (FFT)-based acquisition to locate 
visible satellites and record coarse 
estimates of their respective Doppler 
frequency and code phase values to 
initialize the individual tracking loops. 
One scalar tracking loop — a frequen-
cy locked loop (FLL)-assisted phase 
locked loop (FLL-assisted-PLL) and 
delay locked loop (DLL) — is assigned 
to each visible satellite from the acqui-
sition engine. 

Measurements and decoded naviga-
tion data (ephemeris, almanac, and so 
forth) from the tracking loops are pro-
vided to the navigation engine, which 
produces a position, velocity, and time 
(PVT) solution at a user-defined rate. 
The user is able to modify the operation-
al parameters and settings of the soft-
ware receiver through an external text 
file, represented in Figure 3 as “Param-
eters and Settings.” 

Figure 4 contains the carrier track-
ing results for IRNSS PRN 1, showing 
the successful demodulation of the 
navigation data bits, the comparison of 
normalized Doppler frequency estima-
tion between IRNSS and GPS, and the 

gation data was not used in computing 
the final position.)

FGI has developed a multi-GNSS 
software-defined receiver (SDR) plat-
form called FGI-GSRx, which is used 
for the analysis and validation of novel 
algorithms for optimized navigation 
performance. The basic version of FGI-
GSRx operates on an open-source soft-
ware receiver platform described in the 
publication by K. Borre et alia listed in 
the Additional Resources section near 
the end of this article. The original ver-
sion of the FGI-GSRx has been con-
siderably expanded and is compatible 
with GPS, Galileo, GLONASS, Bei-
Dou, and now IRNSS signals, offering 

a truly multi-GNSS architecture. 
On November 6, 2014, beginning 

at 16:10 local time, we used an active 
L1/L2/L5 antenna capable of receiving 
GLONASS, GPS, and satellite-based 
augmentation signals from a roof-top 
location in combination with a highly 
configurable dual-frequency GNSS RF 
front-end to capture and store GNSS 
signals in digitized format (described 
in Table 1) for post-processing by the 
FGI-GSRx software receiver platform. 
In the captured data, the three IRNSS 
satellites (PRN 1, 2 and 3) and 9 GPS 
satellites (PRNs 1, 4, 11, 14, 17, 20, 23, 
31, and 32) are visible, as shown in the 
sky plot of Figure 2.

L1 band L5 band

Intermediate 
Frequency 6.39 MHz 353 Hz

RF Front-end 
Bandwidth 4.2 MHz 10.9 MHz

Sampling 
Frequency 26 MHz 26 MHz

Number of 
Quantization Bits 3 3 + 3

Data Type Real Complex 
(I/Q)

TABLE 1.  Specifications of the sampled 
RF data

Figure 2.  Sky plot showing position of IRNSS and GPS satellites 
over Helsinki Finland on November 6, 2014 at 16:10 local time.
Figure 2.  Sky plot showing position of IRNSS and GPS satellites 
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computed carrier-to-noise density ratio 
(C/N0) for the three IRNSS satellites. 
The normalized Doppler frequency 
estimates show that the estimation 
noise in IRNSS satellite tracking is only 
slightly higher than GPS. However, due 
to their IGSO orbits, the IRNSS satel-
lite displays considerably modest, long-
term Doppler change in comparison 
to the GPS medium earth orbit (MEO) 
satellite. 

Figure 5 shows the pseudorange 
residuals against time for the IRNSS 
IGSO satellites in comparison to GPS 
PRN 31. The elevated pseudorange resid-
uals for IRNSS satellites are expected in 
Finland considering their low elevation, 
lower C/N0, and close-to-zero interme-
diate frequency in the radio front-end 
configuration. Figure 6(a) and 6(b) pres-
ent the static multi-GNSS position solu-
tions using GPS and IRNSS satellites in 

the form of East North up (ENU) com-
ponents and scatter plot, respectively. 

Using IONEX correction parameters 
for the ionosphere error and default cor-
rection parameters for the troposphere 
error, as shown in Table 2 the achieved 
accuracy in terms of 95% circular error 
probability (CEP) is 4.82 meters with a 
standard deviation of 1.30 meters. The 
height accuracy is 5.33 meters (95% 
confidence). Considering that only two 
IRNSS satellites were used in the posi-
tion solution, the accuracy figures are 
consistent with a GPS-only scenario.

As expected, the geometric dilution 
of precision (GDOP) improves from 2.02 
to 1.85 by the inclusion of IRNSS satel-
lites into a GPS-only constellation. In a 
hypothetical scenario, we assumed that 
only three GPS satellites were visible, not 
enough for a GPS-only position solution. 
In this case, the two IRNSS satellites 
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2D accuracy (95% CEP) 4.82 m

Standard deviation in the 
position results 1.30 m

Height accuracy 5.33 m

GDOP 1.85

2D accuracy - 3 GPS 
satellites augmented by 2 
IRNSS satellites

15.63 m

TABLE 2.  Summary of the multi-GNSS 
(GPS + IRNSS) positioning results in 
Helsinki, FinlandFIGURE 4  IRNSS PRN 1 tracking results & C/N0 estimates for PRNs 1, 2, 3

Navigation data bits

Time [s] x 104

6000

4000

2000

0

-2000

-4000

-6000
5.28 5.3 5.32 5.34

Scatter Plot

I prompt

Q
-p

ro
m

pt

6000

4000

2000

0

-2000

-4000

-6000
-5000 0 50005.36

Normalized Carrier Doppler

Time [s] x 104

Fr
eq

ue
nc

y 
[H

z]

0

-20

-40

-60

2 4 6 8 10 12

IRNSS Carrier-to-Noise density ratio (C/N0)

Time [s]

C/
N

0 [
dB

-H
z]

40

35

30

25

20

15
0 20 40 60 80 100 120

FIGURE 3  Block diagram of the FGI-GSRx receiver assembly
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were beneficial to obtain a GPS-IRNSS 
multi-GNSS solution with 95% accuracy 
of 15.63 meters. 

These results — which are within 
the 20-meter accuracy predicted by 
ISRO for IRNSS — suggest the pos-
sibility that in south Finland (and also 
in eastern Europe) IRNSS satellites 
may be able to complement the Galileo 
constellation until enough of its satel-
lites are deployed to obtain a continu-
ous Galileo-only position fix. These 
benefits are expected to grow as more 
IRNSS satellites are deployed in space 
in the future. Therefore, the impact of 
these results is considerable and inter-
esting to the positioning, navigation 
and timing (PNT) research and user 
community even outside the intended 
service area of IRNSS.

In conclusion, 
this study showed 
t hat researchers 
at  FGI success-
fully processed the 
IRNSS signals using 
the FGI-GSRx soft-
ware receiver plat-
form whi le a lso 
demonstrating the 
benefits to Finland 
in multi-GNSS posi-
tioning from using 
this emerging navi-
gation system. 
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FIGURE 5  Pseudorange residuals against time 
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FIGURE 6  Static multi-GNSS positioning solution with GPS and IRNSS satellites (a) ENU components, 
and (b) 2D scatter diagram 
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