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City Models
When life gives you lemons, make 
lemonade. This article presents a 

smartphone-based system that uses 
the GNSS signal “shadows” cast by 

buildings — usually the satellite-
signal–blocking bane of navigating 

in narrow urban canyons — to 
improve the accuracy of street-

level positioning. The authors 
present the results of field tests 
that reveal dramatic reduction 

of positioning errors and 
improved availability.
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The poor performance of GNSS 
user equipment in urban can-
yons in terms of both accuracy 
and solution availability is a 

well-known problem that arises where 
there are tall buildings or narrow streets. 
This situation is worse in the cross-street 
direction than in the along-street direc-
tion. (See Figure 1.)

The accuracy in the cross-street 
direction can be of great importance to 
daily life. Numerous street-level appli-
cations require sufficient positioning 
accuracy to perform their functions: for 
example, detecting the lane in which a 
vehicle is operating for lane guidance 
systems and intelligent transportation 
systems (ITS), location-based advertis-
ing (LBA), augmented-reality applica-
tions, and step-by-step guidance for the 
visually impaired or tourists. 

A variety of navigation sensors have 
been used to enhance or augment GNSS 
to improve navigation performance 
in highly built-up areas. Road vehicles 
typically combine GNSS with odom-
eters and map-matching algorithms, 
while pedestrian navigation users may 
combine GNSS with cell phone signals, 
Wi-Fi, and/or dead reckoning using 
inertial sensors, magnetic compass, 

and barometric altimeter. A selection 
of these sensors can help mobile phone 
users to recognize motion states; con-
sequently, context-adaptive algorithms 
can be applied to improve the position-
ing performance. 

Although such approaches improve 
the availability and robustness of a posi-
tion solution, they do not particularly 
improve the cross-street accuracy.

In recent years, 3D building models 
have become more accurate and widely 
available and are being treated as a new 
data source for urban navigation that 
can improve positioning performance in 
urban canyons. Some investigators are 
applying 3D city models to enhance map 
matching and image matching in land 
vehicle navigation. One line of research 
employs these models to evaluate GNSS 
positioning performance with 3D ray 
tracing or ray intersection techniques. 
This approach demonstrates the practi-
cal potential of shadow matching and is 
the focus of this article. 

GNSS Shadow Matching
The principle of shadow matching 
employs the “shadows” of GNSS satel-
lite signals to refine the position solu-
tion obtained from line-of-sight (LOS) 

and non-line-of-sight (NLOS) signals. 
Because of surrounding structures, 
signals from GNSS satellites may be 
receivable in some parts of a street, but 
not others. 

In combination with a 3D city model, 
a GNSS receiver can determine its posi-
tion to within one of two areas of the 
street as illustrated in Figure 2. Incorpo-
rating other GNSS satellite signals allows 
users to further refine the position solu-
tion, matching the observed signal shad-
ows with the predicted shadowing avail-
able from the 3D model.

 In previous work, we evaluated and 
verified the performance of GNSS in 
urban canyons using 3D city models. 
Then, we developed a preliminary shad-
ow-matching algorithm that demonstrat-
ed the ability to distinguish the pavement 
from a vehicle lane, and identify the cor-
rect side of the street using real-world 
GPS and GLONASS measurements 

Next, we proposed a new scheme 
that takes into account the effects of 
satellite signal diffraction and reflec-
tion by weighting the scores based on 
diffraction modelling and the signal-
to-noise ratio (SNR). This was shown 
to improve the navigation solution of 
geodetic GPS and GLONASS receivers. 

FIGURE 1  Satellite signals with lines of sight (LOS) going across the street 
are much more likely to be blocked by buildings than signals with LOS 
going along the street. (from L. Wang et alia, 2013a)

FIGURE 2  The shadow-matching concept: using direct signal reception to 
localize position (from L. Wang et alia, 2013a, based on P. Groves, 2011).
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Recently, we collected GNSS data collected on a smartphone 
and processed the data using a shadow-matching algorithm 
on a PC; however, we still need to conduct a comprehensive 
analysis of these latest efforts to address the issue of computa-
tion efficiency. The series of articles by L. Wang et alia and P. 
Groves et alia, cited in the Additional Resources section near 
the end of this article, describe these initial shadow-matching 
investigations.

This article presents a significant development of shadow 
matching — a smartphone-based shadow-matching system 
that works in real time. This work is motivated by two con-
cerns: accommodating the low-grade antenna and the low-
computational power typical of smartphones.

As for the first concern, most potential applications of 
shadow matching use consumer-grade GNSS user equipment, 
whereas previous shadow matching algorithms were mainly 
tested using geodetic GNSS receivers. Moreover, consumer-
grade GNSS receivers normally cost much less and can be 
subject to worse signal reception, more severe multipath recep-

tion, and stronger non-line of sight (NLOS) reception due to 
the low gain and linear polarization of consumer-grade GNSS 
antennas. These differences can degrade shadow-matching 
performance.

Regarding our second motivation for the current focus, 
smartphones and personal navigation devices (PND) normally 
have much less computational capability in comparison with 
a desktop computer or laptop, whereas the existing algorithm 
has only been run on personal computers. Its computational 
efficiency has not previously been tested. Thus, optimization of 
the shadow-matching technique to make it suitable for smart-
phone-grade devices is worth investigation. 

Consequently, this article proposes and implements a 
smartphone-based system, aiming at meters-level cross-street 
accuracy in urban canyons. It will also assess the real-time 
positioning performance of shadow matching on a smartphone.

The following section summarizes the design of the real-time 
shadow-matching system and presents its optimizations in pre-
processing to determine the elevation and azimuth boundary of 
the buildings in a test area. We then describe the details of appli-
cation development on the phone’s Android operating system. 

Next comes an assessment of real-time experiments apply-
ing various criteria to compare the performance of the conven-
tional GNSS navigation solution with the shadow-matching 
system solution. Finally we address the feasibility of larger 
scale implementation and end with conclusions drawn from 
the results of this investigation.

System Design & Optimization 
for Real-Time Apps
Let’s start by explaining key design choices of the smartphone-
based shadow-matching system, including overall architecture, 
the modified shadow-matching algorithm, and improvements 
essential to real-time efficiency.

System Architecture Design. In a full implementation of a 
shadow-matching system, a server interacts with the smart-
phone user. The smartphone first sends a positioning request 
with an initial GNSS position to the server. The server then 
gathers the building boundary data that assists in shadow-
matching based on the user’s initial position solution and sends 
them back to the user. Finally, the smartphone performs the 
shadow-matching algorithm and acquires a revised position-
ing solution. The overall architecture of the shadow-matching 
system is illustrated in Figure 3. 

In terms of algorithm design, shadow matching has two 
phases — the offline phase (the preparation step) and the online 
phase (the real-time positioning) — which are executed in four 
steps, represented by the red boxes in Figure 4.

The off-line phase is conducted to generate a grid of building 
boundaries. At the beginning of the online phase, the search 
area is defined for the shadow-matching position solution, 
using the initial GNSS position. 

In the second step, satellite visibility at each grid position is 
predicted using the building boundaries generated from the 3D 
city model. After that, the difference between prediction and 

URBAN POSITIONING

FIGURE 3  The overall system architecture design

FIGURE 4  A workflow of the improved shadow-matching algorithm
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observation is evaluated using a scoring 
scheme, providing a score for each grid 
point in the search area. 

Finally, the shadow-matching posi-
tioning solution is generated by a modi-
fied k-nearest-neighbors algorithm, 
which averages the grid points with the 
highest scores. A full implementation 
would also incorporate context detec-
tion to determine whether the user is 
in an indoor, urban, or open environ-

ment (See the article by P. Groves et alia, 
2013b). In that case, the shadow-match-
ing algorithm would only be implement-
ed in urban contexts.  

Let’s look at each of the shadow-
matching steps in more detail.

Step 0: Generate a Grid of Building 
Boundaries (Off-Line Phase). In the off-
line phase, building boundaries are 
generated for each point on a grid of 
outdoor locations. The boundaries are 
presented from a GNSS user’s perspec-
tive, with the building edges determined 
for each azimuth (from 0 to 360 degrees) 
as a series of elevation angles. The results 
from this step show where the building 
edges are located within an azimuth-
elevation sky plot. 

Figure 5 shows an example of a build-
ing boundary computed from a candi-
date user location. Once the building 
boundary has been computed, it may be 
stored and reused in the online phase to 
predict satellite visibility by simply com-
paring the elevation of a satellite with 

the elevation of the building boundary 
at the same azimuth. We developed a 
software toolkit in C++ for generating 
the grid of building boundaries from a 
3D city model. 

Step 1: Determine the Search Area 
for Candidate Positions from the Building 
Boundaries on a Grid. The first step of the 
shadow-matching algorithm requires an 
initial GNSS position. In an urban envi-
ronment, GNSS accuracy is often poor.. 
Therefore, it is important to minimize the 
effects of NLOS reception and multipath 
interference on the position solution. 

Other available positioning methods 
(e.g., Wi-Fi or cell network solutions) 
may be introduced in this step when 
the blockage is too great in urban can-
yons for GNSS to provide a position fix 
or when GNSS gives less accurate posi-
tioning than other available positioning 
methods. 

The first step defines the search area 
in which the candidate positions are 
located for the shadow-matching posi-

FIGURE 5  An example of a building boundary as 
azimuth-elevation pairs in a sky plot. (The 
center of the plot corresponds to a 90º eleva-
tion or normal incidence)
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tion solution. A search area is defined 
based on the initial position. A simple 
implementation would be to draw a 
fixed-radius circle centered at the ini-
tialized position, but more advanced 
algorithms can be developed to use the 
knowledge of satellite geometry to opti-
mize the search area.

For instance, if the initial position is 
generated using a conventional GNSS 
solution, the signal geometry — and 
hence the positioning accuracy — will 
be much better along the direction of the 
street than at right angles to the street. 
This is because an urban canyon affects 
the geometry of the available GNSS sig-
nals. As explained earlier, signals with 
cross-street lines of sight are much more 
likely to be blocked by buildings than 
signals with lines of sight running along 
the street. 

Therefore, the conventional GNSS 
solution has a lower accuracy across the 
street and a higher accuracy down the 
street, which is complementary to the 
shadow-matching algorithm. Thus, the 
down-street component of a conven-
tional GNSS solution can be used as a 
reference to define the search area and 
generate candidate user positions with a 
greater range of possibilities in the cross-
street direction. 

Figure 1 illustrates this phenomenon 
by showing the two green mobile phones 
on either side of the initial GNSS solu-
tion of the user phone, with the green 
area representing the search area cen-
tered at the initial position. A more 
advanced shadow-matching algorithm 
would vary the size of its search area 
based on an assessment of the quality of 
the received satellite signals.

Step 2: Predict Satellite Visibility at 
Each Candidate Position. In the second 

step, performed at each candidate posi-
tion, each satellite’s elevation is com-
pared with the building boundary eleva-
tion at the same azimuth. The satellite is 
predicted to be visible if the satellite is 
above the building boundary. With pre-
computed building boundaries, this step 
can be computationally efficient. 

Step 3: Satellite Visibility Scoring. In 
the third step, the similarity between 
predictions and observations of the sat-
ellite visibility is evaluated. The candi-
date positions with the better matches 
will then be weighted higher in the 
shadow-matching positioning solution. 

Calculating a score for a candidate 
position takes place in two stages. First, 
each satellite above the elevation mask 
angle is given a score, calculated based 
on the predicted and observed visibility. 
Second, the position-scoring function 
evaluates the overall degree of match 
between predicted and observed satellite 
visibility for each possible user position. 
This is illustrated in Equation (1). 

where fpos(j) is the position score for grid 
point j and fsat(i, j, SS) is the score of sat-
ellite i at grid point j using the scoring 
scheme SS, which defines a score based 
on predicted and observed satellite vis-
ibility, while n is the number of satellites 
above the elevation mask angle. 

By the end of this step, each candi-
date position should have a score to rep-
resent the degree to which it matches the 
observed satellite visibility, and thus how 
likely it is that each candidate position is 
close to the true location.

Various scoring schemes can be 
applied at this stage. Figure 6 shows 
the two-by-two scoring scheme used 
in this work. This scheme only consid-
ers direct LOS signals. Other schemes 
can take into account diffraction 
and ref lection effects. The difference 
between various scoring schemes is 
outside the scope of this article. More 
details can be found in the paper by L. 
Wang et alia (2013a).

Step 4: Positioning Using Scores at Can-
didate Positions. The last step of the shad-

ow-matching algorithm generates a posi-
tion solution using the scores from each 
candidate position. Shadow matching 
uses the pattern-matching positioning 
method (Groves, 2013a) cited in Addi-
tional Resources. As the process of Wi-Fi 
fingerprinting is similar to this process, 
the algorithms used in Wi-Fi finger-
printing may be investigated for their 
potential implementation in shadow 
matching. Potential algorithms include, 
but are not limited to, k-weighted near-
est neighbors, the Bayesian inference 
received signal strength (RSS) location 
method, and the particle filter.

In the work described in this article, 
we used a method similar to k-nearest 
neighbors to estimate the location, aver-
aging the grid positions with the high-
est scores. In the current scoring system, 
scores take integer values. Therefore, 
several grid points typically share the 
highest score. The points in the grid with 
highest scores are regarded as nearest 
neighbors. 

For L nearest neighbors, the location 
estimate is obtained using (2):

where ni and ei are, respectively, the 
northing and easting coordinates of the 
ith high-scoring candidate positions. 
Note that L varies from epoch to epoch 
depending on how many candidate posi-
tions share the highest score.

Improving Real-Time 
Efficiency
The main strategy for improving real-
time efficiency involves pre-computing 
the building boundaries and storing 
these on a server. From the perspective 
of mobile devices, this approach trades 
time and computing power for a one-
off processing requirement at the server 
side. Specifically, this is achieved by rep-
resenting the 3D model in a specially 
designed form: building boundaries at 
each candidate position. 

The logic behind this strategy arises 
from the fact that the vast amount of 

FIGURE 6  The two-by-two scoring scheme 
giving the score for each satellite in shadow 
matching

URBAN POSITIONING
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data in a 3D city 
model  i s  not of 
direct interest to 
our shadow-match-
ing algorithm. The 
a l gor i t h m  on l y 
n e e d s  t o  k n ow 
where the edges 
of the bui ldings 
are located from a 
user’s perspective. 
So,  our met hod 
only extracts the 
building boundar-
ies at each candi-
date position from 
the 3D model. 

This approach 
s ave s  re a l  t i me 
computational load, 

because individual mobile devices do not need to compute the 
building boundaries on the fly. Instead, they can simply request 
pre-computed building boundaries at a certain range of loca-
tions, or cache a desired region.

Using stored building boundaries, this method requires 
fewer than 50 comparison and addition operations to calculate 
an overall shadow-matching score for one candidate position 
using signals from two GNSS constellations. Therefore, shadow 
matching may be performed in real time on a mobile device 
with several hundred candidate positions, where necessary. 

The optimized process in the off-line phase can be broken 
into four steps. To begin, a horizontal grid of points with three-
meter spacing, covering the 3D city model area, is generated. 
The height is set to be 1.5 meters above the terrain height mea-
sured in the 3D city model, reflecting the assumed location of 
a handheld smartphone. 

Next, a pre-processing step eliminates indoor points from 
the generated grid in the first step, because the current shadow-
matching algorithm is designed to work outdoors. Outdoor 
points are distinguished from indoor ones by testing whether 
the elevation angle of the sky at each azimuth is 90 degrees. 
Further details of the algorithms testing line-of-sight visibility 
can be found in a previous paper (Wang et al., 2012). 

The third step eliminates from the search area any build-
ings that are unlikely to block satellite signals, based on checks 
of their relative location from the candidate position of inter-
est. Finally, the lowest elevation angle for a visible sky at each 
azimuth is tested to determine the building boundary at each 
outdoor candidate position. Figure 7 outlines this process of 
generating building boundaries. 

In order to improve the efficiency of the off-line phase, in the 
third step only buildings that are close to the candidate position 
and in the direction of interest are tested. In this step we test 
in every azimuth (1, 2, …, 360 degrees) direction separately. 
For example, when we are computing building boundaries at 
azimuth 10 degree, we don’t need to consider buildings that are 
located at 190 degree because those buildings cannot block a 
signal from azimuth 10 degree. Figure 8 illustrates this search 
area, noting that the parameters marked on the figure are manu-
ally selected based on knowledge of the 3D city model used in 
this work. Appropriate changes should be made if using another 
type of city model. 

Without optimization described in this section, it takes an 
estimated six days to perform the process of calculating a grid 
of candidate positions with three-meter spacing across a 500-
by-500–meter area, using a computer with a CPU speed of 2.67 
gigahertz. After optimization, the time required to generate 
building boundaries at the same grid of points was reduced 
to 10 hours, a 93 percent reduction in time compared to the 
original algorithm for PC-based shadow matching.

Developing Apps for Android Devices
We developed an application (app) that runs on the Android 
operating system. The smartphone used in this work receives 
both GPS and GLONASS satellites with assisted-GPS (A-GPS 
or AGPS) capability. It runs on a Linux-based operating sys-
tem primarily for mobile devices. It is one of the most common 
smartphone systems available for purchase today. 

Additional details of the smartphone and the software tools 
used in this work may be found in the Manufacturers section 
near the end of this article. In this section we will focus on the 
development of the smartphone app itself.

The app was developed in Java and built on the Standard 
Android platform 4.0.3, using the Android application pro-
gramming interface (API) to retrieve information from the 

FIGURE 7  The process that generates the grid of building boundaries

FIGURE 8  The optimization used in building 
boundary generation by refining city models 
according to location of a candidate user 
position and an azimuth of interest (Aerial 
perspective, figure not drawn to scale) (from 
L. Wang et alia, 2013a)
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GNSS chip in the smartphone. In this implementation, the 
building boundary data is stored on the phone’s secure digital 
(SD) memory card. The Android operating system listens to 
the real-time GNSS messages from the GNSS chip, interprets 
GNSS information from them, and provides the information to 
app developers through the API. The public interface GpsSta-
tus.Listener outputs, in real time, the information provided by 
the GNSS chip, and contains a number of useful attributes, 
including azimuth, elevation, and SNR of GPS and GLONASS 
satellites in view. The latest location determined by the GNSS 
chip is also output by the public interface LocationListener. 

This data feeds into the shadow-matching positioning 
engine, together with the building boundary data stored on 

the SD card. The positioning engine then computes user posi-
tion based on the conventional GNSS solution. Finally, the 
positioning results are displayed on maps. Figure 9 provides a 
flowchart of the app.

Assessing App Performance 
in Field Experiments
To evaluate the performance of a real time shadow matching 
system on smartphones, experiments were conducted in cen-
tral London, England. The following section describes the 3D 
city model, the test sites, and the configuration of the shad-
ow-matching system. Recorded GNSS data is then processed 
using an identical algorithm to that in the real-time system 
The design and results of a typical example of the real-time 
experiments are compared with those of conventional GNSS 
positioning. 

Experimental Settings. We used a 3D city model of the 
Aldgate area of central London. The model has a high level of 
detail and decimeter-level accuracy. Figure 10 shows part of the 

city model used in the experiments. 
Four locations with diverse road condi-

tions were selected on Fenchurch Street, a 
built-up urban area. Accompanying photos 
taken at the street show the urban environ-
ments. Two of the sites, named G1 and R1, 
were located at a “T” junction between 
Fenchurch Street and Fenchurch Build-
ings Road. The other two sites, named G2 
and R2, were selected between junctions on 
Fenchurch Street. 

G1 and R1 are located on opposite sides 
of the street, enabling the new system to 
also be tested for its ability to distinguish 
the correct side of the street. The same 
layout applies to G2 and R2. All sites were 
selected on the footpath (sidewalk) close to 
traffic lanes. 

Figure 11 shows an aerial view of the 
city model and a satellite image, illustrat-
ing the settings of the four experimental 

URBAN POSITIONING

FIGURE 10  Part of the 3D model of London used in the experiments

Photos taken at the experimental sites in London, England, showing the urban environments 
in experiment G2

FIGURE 9  Flowchart of the real time application running on Android 
devices
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sites. The truth model is set using the 3D city model. The slight 
offset between the city model and the satellite image is caused 
by the geometric distortions of the satellite images. 

Before the experiment, in the off-line phase of this work, 
we generated a grid with three-meter spacing. Indoor points 
were then eliminated and building boundaries determined at 
outdoor points, as described previously. The building boundar-
ies were stored in a specially defined format in a database and 
pre-loaded on the smartphone used in this experiment.

Real-time shadow-matching positioning was performed 
with a five-second interval on the smartphone. The researcher 
stood at each location for six minutes collecting both GPS and 
GLONASS observations. Real time satellite visibility informa-
tion and conventional GNSS positioning results were recorded 
at one-second intervals for later analysis. 

Real-Time Experiment. We conducted the shadow-matching 
positioning experiment in real time and found that the typical 
processing time took one to two seconds. 

Figure 12 shows the shadow-matching app being used at 
site G2 during the real-time experiment. As the application is 
a prototype of the real-time shadow-matching system, both the 
conventional GNSS solution of the smartphone GNSS chip and 
the positioning solution of the new system are displayed to the 
researcher for a real-time comparison. The blue points are the 
conventional GNSS solutions, while the red points represent 
the solutions of the new system. 

The true location of the experimenter at G2 can be found 
in Figure 11. The blue points on the screen in Figure 12 indi-
cate that the conventional solutions are on the wrong side of 
the street and distributed sparsely in the across-street direc-
tion compared with the solutions of the new app. The shadow-
matching real-time solutions (red points) are distributed more 
consistently in the across-street direction, on the correct side of 
the street. This is in line with the expected benefits of the new 
system, which gives better across-street accuracy.

Analysis of algorithm scoring results. In real time, a 40-meter 
radius circle, centered at the conventional GNSS positioning 
solution provided by the smartphone GNSS chip, is used to 
generate candidate positions defining the search region for the 
new shadow-matching technique. The pre-calculated candidate 
grid of building boundaries (i.e., the off-line phase database) is 
loaded at this stage. At each observation epoch, a comparison 
is made between the predicted and observed satellite visibility, 
and the scoring scheme is applied accordingly. 

To illustrate the distribution of scores at the grid points, 
Figure 13 displays examples of the score maps at each experi-
mental location. The colored dots represent the candidate posi-
tions obtained and assessed by the shadow-matching app. The 
scale on the right-hand side of the graphs represents the score 
obtained for each candidate position in the shadow-matching 
algorithm, with higher scores representing a higher confidence 
level that the user is at this location. The true location of the 
experimental site is shown by a black cross in each color map.

The results in Figure 13 clearly demonstrate that the shad-
ow-matching algorithm is sensitive to changes in the cross-

street direction, but less sensitive in the down-street direction. 
This is in line with expectations and complements conventional 
GNSS positioning, which is generally more precise in the down-
street direction in urban areas due to the signal geometry.

As seen in Figure 13, some spaces between buildings fall 
within the search area. These are the colored dots surrounded 

FIGURE 11  An aerial view of the experimental site on Fenchurch Street: 
3D city model (above) and satellite image (below) Colors are used to 
distinguish sites at each side of the street, i.e., red pins are sites at the 
southern side of the street; green pins are sites at the northern side of 
the street.

FIGURE 12  The real time experiment using the developed shadow-match-
ing application on the smartphone at site G2
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by white areas. However, the highest 
scoring points are predominantly in the 
correct street. From this figure we can 
also infer that, in most cases, the high-
est score areas (dark red) appear on the 
correct side of the street. However, the 
high scores do not always appear at the 
expected area, mainly due to non-line-
of-sight signal reception. Applying dif-
ferent scoring matrices may reduce the 
effect imposed by NLOS receptions, but 
this is outside the scope of this article. 

Performance Comparison with Conven-
tional GNSS Positioning. To assess the per-
formance of real-time shadow matching 
against the conventional GNSS posi-
tioning solution, we transformed the 
position errors from local coordinates 
(Northing and Easting) to the along-
street and across-street directions. Fig-
ure 14 shows the positioning results of 
the conventional GNSS navigation solu-
tion from the smartphone GNSS chip, 
compared with the shadow-matching 
positioning results, expressed as errors 
in the across-street direction. 

URBAN POSITIONING

FIGURE 14  Comparison of cross-street positioning error between conventional GNSS solution provided by the smartphone and the shadow matching solu-
tion, both based on real-time data

FIGURE 13  Shadow matching scoring map at one epoch for four experimental sites: the black cross in-
dicates the actual position of the user; scale at right indicates the confidence level that candidate 
shadow-matching solutions match the true user position.
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The results show that, in most cases, the shadow match-
ing solution outperforms the conventional GNSS positioning 
solution. The shadow matching solution has improved the con-
ventional positioning error, in the across-street direction, from 
typically 10–40 meters to within 5 meters in most epochs. In 
the case of G2 (the upper-right panel in Figure 14), the shadow-
matching solution accuracy is better than two meters in most 
epochs. 

On the right side of each sub-figure in the figure, the posi-
tion error distribution is compared between the shadow match-
ing solution and the conventional solution. These results show 
that shadow matching improves the positioning accuracy, 
reducing the average error to less than five meters on average 
in each case. 

In order to evaluate the performance across all of the 
epochs, we conducted a statistical analysis using an indicator, 
mean absolute deviation (MAD). Comparisons of the MADs at 
each site, seen in Figure 15, show the improvements of shadow 
matching over conventional GNSS positioning.

Each set of colored bars shows the mean across-street posi-
tioning error using the conventional and shadow matching 
algorithms, respectively. The data cover a six-minute observa-
tion period, during which the constellation geometry changed 
slowly; so, the results are highly correlated, temporally, allow-
ing consistency of the system to be evaluated. 

The results indicate that across-street positioning perfor-
mance of shadow matching is significantly better than the con-
ventional GNSS positioning solution. The shadow-matching 
positioning algorithm reduced the average cross-street error 
by 36.9, 77.6, 90.8, and 71.3 percent for G1, G2, R1, and R2, 
respectively. 

The new positioning system reduces the 
cross-street error from 14.81 meters in the 
conventional solution to 3.33 meters in the 
new system, averaged over all four experi-
mental sites. This is a 77.5 percent reduc-
tion of cross-street positioning errors on 
average. The RMS difference shows that 
the consistency of the shadow-matching 
solution also outperforms the conventional 
solution.

We conducted further statistical com-
parisons to assess the positioning per-
formance in terms of success rate over 
six minutes, and the results are shown in 
Figure 16. As the street is about 10 meters 
wide, a positioning accuracy of less than 
5 meters is considered good enough to 
determine correctly which side of the street 
the users is on, while a positioning accu-
racy better than 2 meters should be good 
enough to distinguish the footpath from a 
traffic lane. 

Averaged over the four experimental 
sites, shadow matching produced a 54.4 

percent success rate for correctly determining the side of the 
street, significantly improved from the success rate of 20.9 
percent for the conventional solution. The success rate for dis-
tinguishing the footpath from a traffic lane is 25.6 percent for 
shadow matching, also considerably increased from 7.7 percent 
for the conventional GNSS positioning.

Figure 17 shows the positioning results of the new system 
compared with the conventional GNSS solution as displayed in 
the satellite view of Google Earth. The blue dots represent the 
locations of the conventional GNSS solution, recorded in real 
time. The purple dots denote the positioning solutions provided 
by the new system. The green and red pushpins represent the 
true location of the site in each case. 

FIGURE 15  Comparison of the cross-street mean absolute deviation 
(meters) over all epochs between the conventional GNSS positioning 
solution and the shadow-matching solution

FIGURE 16  Success rate of cross-street positioning error within certain ranges, compared between 
the new positioning system and the conventional GNSS solution.
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These results indicate that, typically, 
the new system gives solutions more 
consistent with each other in the cross-
street direction and better accuracy 
compared to the conventional solution. 
However, the conventional solution is 
more accurate in the along-street direc-
tion, in line with expectations. 

The smartphone-based shadow-
matching positioning system is a suitable 
complement to conventional GNSS posi-
tioning. As shadow matching improves 
the cross-street positioning significantly, 
it shows a high potential to be combined 
with conventional GNSS and other 
possible techniques for better overall 
performance.

Notably, the selection of a suitable 
grid spacing of building boundaries 
influences the performance and speed of 
the shadow matching system. The three-
meter spacing of the current implemen-
tation of the real-time shadow-matching 
system already produces a significant 
performance improvement in compari-

son with conventional GNSS position-
ing. A grid with two-meter, one-meter,or 
even denser spacing can potentially be 
applied. 

In our research described here, we also 
tested a one-meter grid spacing, which 
provided an improved performance 
of five percent in terms of reduction of 
mean error averaged over the four sites. 
However, using the grid with one-meter 
spacing requires roughly nine times more 
computational time in comparison with 
using a three-meter grid spacing. 

Clearly, there is a trade-off between 
the accuracy of the shadow matching 
system and the running time. The reason 
we ultimately used a three-meter grid in 
the real-time system is that it gives the 
best compromise between performance 
and speed.

Potential for Larger-Scale 
Implementation
This section assesses the feasibility of 
deploying the system for broader usage.

Availability of 3D City Models and Sat-
ellite Information. The shadow-match-
ing system depends on 3D or 2.5D city 
models to improve positioning; so, the 
availability of the models is important. 
Fortunately, an increasing number of 
3D city models are available through 
the Internet. A few commercial exam-
ples are mentioned in the Manufactur-
ers section alongside an option for free/
inexpensive models.

By relying on the building bound-
aries from the city models, the shadow 
matching system only requires informa-
tion on which satellites are being tracked 
rather than actually processing pseudo-
range or carrier phase measurements. 
This is provided by most consumer-
grade GNSS receivers on a regular basis 
in NMEA sentences using data from 
GNSS navigation messages.. With an 
SNR message also regularly available 
through NMEA sentences, shadow 
matching can provide even more reli-
able performance. Fortunately, various 
phone operating systems provide an API 
for developers to get this information in 
real time.

Data Storage and Transfer Require-
ments. Shadow matching requires 
knowledge of the building boundar-
ies in order to work. Thus, the build-
ing boundaries database should be 
transferred to the user device on the 
fly or pre-downloaded (Groves et alia,
2012b). 

Building boundaries with one-
degree resolution in azimuth at a grid 
point requires about 300 bytes of stor-
age, without compression. With a 3 
meter × 3 meter grid, a one kilometer-
long, 20-meter wide street would con-
tain 2,222 grid points, which would 
require 651 kilobytes of data storage. If 
similarities between adjacent azimuths 
were exploited, substantial data com-
pression should be possible — perhaps 
up to a factor of 10. 

A four gigabyte f lash drive could 
store up to 62,920 kilometers of road 
network. The Great London metropoli-
tan area contains about 15,000 kilome-
ters of road. Thus, it may be practical to 
preload the building boundaries onto a 
smartphone.

URBAN POSITIONING

FIGURE 17  The positioning solution shown in satellite image view (blue dots represent locations of 
the conventional GNSS solution; purple dots denote positioning solutions provided by the new sys-
tem; the pushpin tags represent the true location of the site in each case; Image © 2013 Bluesky)
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An alternate method would be to 
transfer the data over the mobile net-
work as required. On a 100-meter long 
20-meter wide street, only 222 grid 
points are needed for shadow matching, 
which requires 65 kB of data. Transfer-
ring this would take less than a second 
using the 3G mobile phone network with 
a normal data plan.

Thus, in practice, it is feasible to 
implement the shadow-matching sys-
tem on a smartphone, a PND, or other 
consumer-grade navigation device.

Demand from Applications. Meters-
level across-street accuracy in urban 
areas benefits a number of existing 
location-based services and creates new 
applications. For example, vehicle lane 
detection is feasible with meters-level 
across-street accuracy. Although lane 
guidance systems are now common for 
in-car navigation systems, they can only 
suggest a correct lane to a driver, without 
knowledge of which lane the car is cur-
rently operating on. 

A lane detection system may enable 
a lane guidance system to know the 
current lane of operating and thus bet-
ter guides a driver to the correct lane 
and sends warning when the car is not 
operating on the correct lane. Similarly, 
intelligent transportation systems (ITS) 
may use this technique to give directions 
to individual vehicles so as to maximize 
traffic f low and give priority to emer-
gency vehicles. 

In situations where crossing the road 
takes considerable effort for pedestrians, 
location-based advertising (LBA) sys-
tems could use this technique to target 
the most suitable customers on the same 
side of the street. Some augmented-real-
ity games may enhance the experience 
of the players through more accurate 
positioning. 

Perhaps most importantly, step-by-
step guidance for the visually impaired 
and for tourists requires high position-
ing accuracy in urban areas in order 
to work. Navigation in mountainous 
regions could also benefit from this 
system when a digital elevation model 
(DEM) is available. 

Conclusions
A new smartphone-based shadow 
matching system, based on knowledge 
derived from 3D models of buildings, 
has been designed. The new system is 
optimized to improve computational 
efficiency to account for the low pro-
cessing power and limited storage on 
smartphones.  

The system does not require real-time 
rendering of 3D scenes or any additional 
hardware, making it power-efficient and 
cost-effective. An increasing number of 
smartphones have multi-core processors, 
enabling parallel processing techniques 
to be exploited for improved efficiency 
of shadow matching. In the future, the 
system can also be expanded to work 
with Galileo and BeiDou (Compass), 
with potentially improved performance.

The shadow matching system can be 
implemented on a smartphone, a PND, 
or other consumer-grade navigation 
device, as part of an intelligent posi-
tioning system, whereby the cross-street 
position is determined mainly by shad-
ow matching and the along-street posi-
tion mainly by conventional ranging-
based GNSS positioning. Multi-epoch 
kinematic positioning using shadow 
matching could also be investigated to 
exploit knowledge from different epochs 
for better positioning performance. 

Other technologies, such as Wi-Fi 
positioning or inertial and pressure 
sensors, could be added to improve the 
overall positioning performance. In the 
long term, shadow matching could form 
part of a new generation of multi-sensor, 
integrated navigation systems alongside 
techniques such as environmental fea-
ture matching, low-cost array-based 
inertial measurement units, opportu-
nistic radio navigation, and context 
adaptivity (described in the article by P. 
Groves et alia, 2013b).
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Assisted-GPS (A-GPS or AGPS) capa-
bility. The smartphone runs on the 
Android operating system, a Linux-
based operating system primarily for 
mobile devices. The app was developed 
in Java using Eclipse, a software devel-
opment environment (SDE) from the 
Eclipse Foundation, Ottawa, Ontario, 
Canada,. The positioning results are dis-
played on maps using the Google Maps 
API. The 3D city model of the Aldgate 
area of central London was supplied by 
ZMapping Ltd., London, England.

3D city models are available from 
a variety of sources including: Google 
Maps 3D by Google Inc., iOS 3D Maps 
by Apple Inc., Bing Maps 3D by Micro-
soft Corporation, Nokia Maps 3D 
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