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   GNSS 
Solutions: 

Non-linear 
estimation 
algorithms 
solving inertial/
GNSS integrated 
navigation systems 
with minimum lower 
bounds have been 
widely explored and 
investigated under 
the assumption of 
Gaussian noises. 
What happens if 
noises are non-
Gaussian? 

V arious designs of inertial/GNSS 
integrated navigation systems 
exist, with different architec-
tures depending on the quality 

of sensors, the mission, the dynamics 

of the vehicle, and the non-linearity 
of the dynamics model, measurement 
model, or both. 

The techniques and solutions used 
for integration are generally “loosely 
coupled,” “tightly coupled,” “ultra 
tightly,” and “deeply coupled” navi-
gation systems. Figure 1 illustrates a 
loosely coupled INS/GNSS architecture 
under non-Gaussian measurement 
noise. 

However, before selecting the best 
system architecture for an integrated 
navigation system (INS), we should 
first calculate the lower bound of 
state estimation exactly, if possible, or 
approximately if it requires heavy and/
or complex mathematical operations.  

In general, let us consider a system 
for which a lower bound is sought (in 
our case, an inertial/GNSS system):

where x is the state vector being esti-
mated, f(x) represents the system 
model, w is the process noise with 
covariance matrix Q, z is the measure-
ment vector, h(x) is the measurement 
model, and η is the measurement noise 
with covariance matrix R. 

For linear systems with uncor-
related white Gaussian process and 
measurement noises, the lower bound 
is called the Cramer Rao Lower Bound 
(CRLB). The definition of CRLB is 
based on the Fisher Information 
Matrix, which in turn is defined as:
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FIGURE 1  Direct filtering inertial/GNSS under interferences effects
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where p(x,z) is the likelihood function. 
The main advantage to calculating the CRLB is to deter-

mine the value of the best estimation of the state variables 
amongst all estimators. This provides advance information 
about whether the goals of a system are achievable or not. 

Specifically, CRLB is calculated offline around the true 
state values. When these values are not available, online 
approximation techniques must be developed using the 
estimated values instead of the true ones. (For details, see 
the article by L. Zuo, R. Niu, and P. K. Varshney listed in the 
Additional Resources section at the end of this article.)

This article focuses on filtering algorithms applied to 
inertial/GNSS integrated navigation systems based on non-
linear dynamic inertial kinematic models and the calculation 
of their corresponding approximated lower bounds. 

Inertial measurement units (IMUs) typically contain 
three orthogonal rate-gyroscopes and three orthogonal accel-
erometers, measuring angular velocity and linear accelera-
tion, respectively. Ideally, the output of the rate-gyroscopes is 
written as 

In practice, however, the outputs contain errors and are 
written as

Integrating these angular rates over time yields the updat-
ed attitude information for the system:

Similarly, accelerometers outputs can be written as

Two integrations subsequently yield velocity and position 
updates as follows:

where g is the estimated gravity vector and Δt is the data peri-
od. Collectively, equations (3) to (9) describe the system model.

For the purpose of our discussion here, the measure-
ment model is assumed to consist of GNSS-observed posi-
tion (PGNSS), velocity (VGNSS), and attitude (AGNSS) — the latter 
derived using a multiple antenna system. Correspondingly, 
we can write the observation matrix as 

Having defined the relevant models, let’s look at two ways 
to approximate the lower bound. The first assumes Gaussian 
errors and uses the non-linear approximation of the Kalman 
filter called the extended Kalman filter (EKF). The second 
approach considers the full non-linear model and non-
Gaussian errors. 

Approximating the CRLB Using an Extended 
Kalman Filter
Although for brevity we omit certain details here (see the 
Additional Reading section at the end of this article for more 
information), the derivation of the lower bounds based on the 
EKF are given by 

where 

where  is the Jacobian matrix of  and 
 is the Jacobian matrix of , and P0 is the 

covariance matrix of the initial estimate. Comparing these 
equations with the update step in an EKF, it is clear that the 
approximated CRLB for non-linear state estimation is exactly 
analogous to the EKF covariance matrix, replacing the state 
estimate with its real value. 

Based on this, experienced users of extended Kalman fil-
ters — and other variants of non-linear filters — can approxi-
mate the CRLB directly using well-known EKF equations. 
For example, Figure 2 shows the approximated CRLB for the 
east velocity and yaw attitude along with the correspond-
ing mean square error (MSE) computed using an EKF, an 
unscented Kalman filter (UKF), a central difference Kalman 
filter (CDKF) and the cubature Kalman filter (CKF). (See the 
articles by I. Arasaratnam and S. Haykin, and also O. Straka, 
J. Duń ık, and M. Simandl listed in Additional Resources.)

Approximating CRLB for Non-Linear Systems 
in the Presence of Non-Gaussian Errors 
Typical inertial/GNSS integration approaches usually adopt 
the Gaussian error assumption. However, in practice, espe-
cially during urban navigation and when several sources 
of GNSS interference are present, this assumption does not 
hold. 
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To this end, the best non-Gaussian 
noise model that has been presented in 
specialized literature is the Huber estima-
tor (in the article by C. Karlgaard and H. 
Schaubt, Additional Resources) using a 
robust estimator algorithm, which is able to 
handle multipath GNSS signals as well as 
intentional and unintentional interferences.

Before explaining the approximation 
of the lower bound, let us describe the 
method used to estimate state variables 
when non-Gaussian errors are present. 
In this case, non-linear filtering variants 
given in previous sections do not perform 
well and need to be transformed into 
robust forms resilient to non-Gaussian 
measurement errors. 

Amongst the different Bayesian esti-
mation algorithms, the particle filter 
is the most generic since it can handle 
non-Gaussian errors as well as non-linear 
systems. However, developing an accu-
racy bound for this case is very difficult. 
Instead, a technique called Gaussian mix-
ture filter is applied to EKF, Sigma Point 
KF (SPKF) and CKF (as discussed in the 
article by I. Arasaratnam et alia, 2007). 

Gaussian mixture models are based 
on the representation of any non-Gauss-
ian distribution as the sum of multiple 
Gaussian densities with different “weights.” For the inertial/
GNSS algorithm discussed here, the noise is assumed to be 
composed of two Gaussian components. With this in mind, 
two approximations to the CRLB are possible, as described in 
the following sections. 

Use of Kullback–Leibler Approach 
to Gaussian Mixture Reduction
A Kullback-Leibler approach can be applied to inertial/GNSS 
integrated navigation systems and consists of successively 
merging pairs of components (“twin density”) and replac-
ing them with a single Gaussian component with equivalent 
mean and variance values calculated based on the sum of two 
Gaussian random variables.  

The Kullback-Leibler (KL) discrimination of probability 
density functions f2 from f1 is defined by 

Suppose we are given the following mixture of two Gauss-
ian components: 

with which we need to approximate this mixture by a single 
Gaussian density. The best and easiest candidate for this 
approximation is given by the Gaussian density with mean μ
and variance P.

Based on the minimal Kullback-Leibler discrimination 
principle, a strong and direct candidate to this approximation 
is given by 

We can then approximate the CRLB using equations 
11–13, thus yielding the posterior CRLB (PCRLB) of non-lin-
ear Gaussian systems. Effectively, this approach is based on 
transforming the non-Gaussian non-linear estimation of an 
inertial/GNSS integrated navigation system into the classic 
well-known non-linear estimation problem under Gaussian 
assumptions (see Figure 3).

Use of Gaussian Mixture Approach to 
Approximate CRLB under Non-Gaussian 
Noises Assumption
Similar to the discussion in the previous section, this 
approach approximates the non-Gaussian errors as Gaussian 
and then approximates the CRLB from this simplified model. 
However, in this case, a bank of Kalman filters are used, each 

FIGURE 2  East velocity/yaw angle estimation with approximated CRLB
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FIGURE 3  East velocity/yaw angle estimation with Kullback-Leibler CRLB based on EKF, UKF, CDKF, 
CKF, and Non-Gaussian “NG” versions
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assumed to process one of the Gauss-
ian mixture components. The outputs 
of the filters are then combined to form 
the final estimate. This concept is illus-
trated in Figure 4.

The idea here is to obtain an opti-
mal approximation based on paral-
lel optimal estimations. In this way, 
inertial/GNSS integrated navigation 
systems could be implemented using 
the approximated optimal lower bound 
when the Gaussian assumption is not 
followed. Sample results of this are 
shown in Figure 5.

As can be seen, the differences 
between Gaussian mixture EKF 
(GMEKF) and the approximated 
CRLB (ACRLB) are nearly the same, 
as expected. However, if we use a stan-
dard EKF, the results are considerably 
worse because the filter is not designed 
to handle non-Gaussian errors. This 
demonstrates the effectiveness of prop-
erly selecting the estimation algorithm 
based on the input noise characteristics.

Summary
The design of optimal inertial/GNSS 
integrated navigation systems begins 
with the calculation or the estima-
tion of the lower bound of the system 
before its development. This article 
has looked at various ways of obtain-
ing an approximation to the CRLB. It 
is hoped that online approximation 
of these lower bounds may soon be 
applied to modern non-linear filtering 
approaches. 
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FIGURE 5  Pitch angle mean square error with Gaussian mixture CRLB (EKF). Right-hand plot is the 
zoomed version of the left hand plot.
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