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Motivation and Background
GNSS technology has become a crucial 
component for modern society. One of 
the major factors that impacts the per-
formance of GNSS at high latitudes and 
equatorial areas is ionospheric scintilla-
tion. Ionospheric scintillation is usually 
manifested by rapid and random fluc-
tuations in signal amplitude and carrier 
phase (see S. Basu et alia (2002) and Y. 
Jiao and Y.T. Morton (2015) in Addition-
al Resources near the end of this article). 
During severe ionospheric scintillation, 
deep amplitude fading and high carrier 
dynamics may result in increased carrier 
tracking loop errors, carrier phase cycle 
slips, and potential loss of lock of signals. 
(see S. Skone et alia (2001) and J. Seo et 
alia (2011), Additional Resources). As 
a result, there is a need to monitor and 

detect ionospheric scintillation, to gain 
an understanding of the signal char-
acteristics during scintillation, and to 
develop robust receiver algorithms that 
can mitigate scintillation effects.

The motivation for this project was 
initiated by the need to effectively and 
efficiently collect sufficient volume of 
high quality, real scintillation data for 
the purpose of analyzing and charac-
terizing the ionospheric scintillation 
phenomena. Since 2011, the authors’ 
research group has been developing 
multi-GNSS data collection systems to 
capture scintillation signals by deploy-
ing these systems at various locations 
known to be susceptible to scintilla-
tion activities around the world (see Y. 
Morton et alia (2015)). Figure 1 shows 
the locations of the established and 
planned data collection sites. Some of 
the data collection systems are equipped 
with devices to collect raw intermediate-
frequency (IF) samples during scintilla-
tion for post-processing. This capability 
is especially important when commer-
cial ionospheric scintillation monitoring 
(ISM) receivers are unable to maintain 
lock of the signals or are incorrectly 
estimating signal parameters during 
strong scintillation. A caveat of IF data 
collection is that it requires an enormous 
storage space due to the high sampling 
rate. Therefore, an effective scintillation 
detector is needed to automatically and 
accurately detect scintillation events and 
trigger the IF data collection process. 
The detector is also useful for research-
ers to sort out scintillation events col-
lected by continuously operating ISM 
receivers for analysis. 
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Most previous scintillation monitor-
ing and detection methods were based 
on commonly used indicators such as 
the amplitude and carrier phase scintil-
lation indices (e.g. S4 and σϕ), and their 
probability density functions (PDFs) 
(see W. Fu et alia (1999), S. Taylor et alia 
(2012) and D.V. Ratnam et alia (2015), 
Additional Resources). These indicators 
are the so-called lower-order moments 
of the scintillation statistics derived from 
standard deviations of signal parameters 
around their nominal trends. Abnor-
malities in these lower-order moments 
due to scintillation are often indistin-
guishable from other effects such as 
multipath and interference. In addition, 
these previous scintillation detection 
methods are usually based on traditional 

Neyman-Pearson 
detect ion theory 
(S.M. Kay (1998), 
Additional Resourc-
es) in which certain 
PDFs (e.g. Gauss-
ian) under different 
hypotheses have to 
be assumed before 
training and detec-
tion. For these rea-
sons, it is difficult 
for these previous 
detectors to have 
reasonable fa lse 
a larm rates and 
missed event detec-
tion rates. While 

missing event detection will clearly 
lead to missed opportunities to study 
potential interesting cases, a high false 
alarm rate will result in the data collec-
tion system capturing events that are not 
of interest to the researcher and lead to 
wasted storage space and analysis time.  

To overcome the above problems, 
we have developed a new automatic 
scintillation detection technique using 
a machine learning algorithm, called 
support vector machine (SVM) (see 
articles from Y. Jiao et alia (2017, 2016 
and 2017), Additional Resources). The 
SVM algorithm is based on the Struc-
tural Risk Minimization (SRM) princi-
ple, which seeks the boundary with the 
greatest separation of the two classes in 
the data samples (see S. Haykin, (2009), 

Additional Resources). The data samples 
are transformed into high-dimensional 
space, where the data will reveal fea-
tures that could not be captured by 
lower-order moments of the signal 
statistics. Moreover, unlike algorithms 
based on the traditional Empirical Risk 
Minimization (ERM) (e.g. minimum 
square error, least squares, and least 
mean squares), which uses empirical 
PDFs of the signals to minimize the 
error between the desired output and 
the actual output (see again S. Haykin, 
(2009), the SVM algorithm does not 
have to assume the PDFs for signals 
under different hypotheses.  Finally, the 
SVM algorithm can further transfer the 
data samples that are not originally lin-
early separable into even higher dimen-
sional space where they may be linearly 
separable.

The basic concept of SVM is shown 
in Figure 2. Given a training data set 

where  is the pth input sample, 
dp = ±1 represents the desired label for 
two classes. If the classes are linearly 
separable in , then the discriminant 
function  exists such that 

The margin of separation between 
the two classes can then be derived as

In the SVM algorithm, the goal is 
to maximize this margin of separation, 
subject to equations (1) and (2). As a 
result, the Lagrangian cost function in 
SVM can be constructed as follows:

where αp’s are the Lagrangian multipliers.
The further development of SVM 

techniques is mainly established on the 
solution of equation (4). For detailed 
mathematical descriptions and deriva-
tions, the readers are referred to Y. Jiao et 
alia (2017) and S. Haykin, (2009).

FIGURE 2  Illustration of the basic concept of SVM. The dots are training 
samples in two classes. The solid line is the optimal hyperplane 
which separates the two classes with the biggest margin of separa-
tion. The dashed lines annotate the margin of separation.

: Margin of 
   separation

Support vectors

FIGURE 1  Global map of GNSS data collection sit established by Dr. Jade Morton’s research 
group.
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In this article, we summarize the 
findings reported in Y. Jiao et alia (2017, 
2016 and 2017), Additional Resources, 
which used a large volume of real scin-
tillation data collected from stations 
in the northern auroral and equatorial 
areas to train and test the SVM-based 
amplitude and phase scintillation detec-
tors. The performance of the detectors 
will be mainly reviewed, including vali-
dation accuracy, testing performance on 
novel data, and concurrent amplitude 
and phase scintillation detection per-
formance using similar SVM techniques 
using data from equatorial regions.

Training and Validation  
All the training data was collected by 
commercial ISM receivers, which out-
put 50 hertz signal intensity and 100 
hertz phase measurements. Only GPS 
L1C/A data is used in this article with 
an elevation mask of 30˚ to reduce mul-
tipath effect. For amplitude scintillation 
detection, a total of 46 hours of data con-
sisting of 15 segments from Ascension 

Island and Hong Kong are selected for 
training. For phase scintillation detec-
tion, a total of 28 hours of data consist-
ing of 30 segments from Gakona, Alas-
ka are used for training (Figure 3). The 
training data are partitioned into three-
minute blocks. Empirical class labels 
are assigned to the training data based 
on manual inspection of the values of 
amplitude scintillation index S4 and 
phase scintillation index σϕ within each 
block (examples shown in Fig. 2). Only 
two class labels are assigned: 0 for non-
scintillation data, and 1 for scintillation 
data. More detailed information of the 
training data set is listed in Y. Jiao et alia
(2016 and 2017), Additional Resources.

The content of the training vector 
for a three-minute data block is listed 
in Table 1. The first entry in a column 
training vector is the class label assigned 
manually. The second and third entries 
are the maximum and the average S4/σϕ
index values within the block. To test the 
impact of the index values on the perfor-
mance of the SVM detectors, the second 

and third entries can be turned on or off 
in the training. The rest of the entries in 
the training vector are power spectrum 
densities (PSD) for different frequencies 
obtained from performing short-time 
Fourier Transform (STFT) on raw signal 
intensity and detrended phase measure-
ments for amplitude and phase scintilla-
tion detection, respectively. 

Validation can be performed using 
the training data and the manually-
assigned class labels. The validation 
methods used for amplitude and phase 
scintillation detection are 25% hold-out 
validation and 5-fold cross-validation, 
respectively, as described by S. Haykin, 
(2009). In 25% hold-out validation, 75% 
of the training data is selected ran-
domly to train the detector, while the 
rest is reserved for validation. In 5-fold 
cross-validation, the training data is 
randomly portioned into five subsets of 
equal sizes. One out of the five subsets is 
retained as the validation data to test the 
model that is trained by the remaining 
four subsets. Then, this cross-validation 
process is repeated five times, so that 
each of the subsets is used exactly once 
as the validation data set. The final vali-
dation performance is an average of the 
five validation results. The latter valida-
tion method is more suitable for a small 
training data set. 

The performance of the amplitude 
and phase scintillation detectors is eval-
uated in terms of the overall accuracy, 
and the true positive rate (TPR) and the 
false positive rate (FPR) of the operat-
ing point as listed in Table 2. TPR and 
FPR are also commonly referred to as 
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Row No.

Content

NoteAmplitude scintillation Phase scintillation

1 Class label 0: non-scintillation  
1: scintillation

2 Maximum S4 index Maximum σϕ index
Selective in training

3 Mean S4 index Mean σϕ index

4
PSD in dB from STFT of 
the raw signal intensity 

measurements

PSD in dB from STFT of 
the detrended phase 

measurements

First value in PSD 
is discarded; Only 

components below 2 
Hz are includedEnd

Table 1 Content of a column training vector used in this study. Each training vector 
corresponds to a training data block 3 minutes in length.

...

FIGURE 3  Examples of training data segments from Ascension Island and Hong Kong for amplitude scintillation detection, and Gakona for phase 
scintillation detection. The red lines are class labels assigned manually. 
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“hit rate” and “false alarm rate”, respec-
tively. They describe the probability of 
categorizing a target (e.g., a scintillation 
event) as present when it is truly present 
or truly absent. In general, the higher the 
TPR or the lower the FPR is, the better 
the performance of the detector is. In 
this study, there are four variations of 

the detector implementation: the S4/σϕ 
features (2nd and 3rd entries) are either 
included or excluded in the training 
vectors; and the SVM algorithm is either 
linear SVM or medium Gaussian kernel 
SVM with a kernel scale of 9.1. 

Table 2 shows that both the SVM 
amplitude detector and phase detec-

tor have good performances. 
Compared to the phase scin-
tillation detector, the general 
performance of the amplitude 
scintillation detector seems to 
be slightly better with a higher 
overall accuracy and lower 
FPR. The four variations of 
either detector show compa-
rable performance. This indi-
cates that non-scintillation 
and scintillation events are 
almost linearly separable in 
the high-dimensional space, 
and excluding index features 
from the training vectors does 
not inf luence the validation 
performance of the amplitude 
or phase scintillation detector. 

Test Performance on Novel Data
To test the generalization capa-
bility of the SVM scintillation 
detectors, several segments of 
novel data from the training 
data sites and from other data 
sites are used. Figure 4 and 
Figure 5 show test results of 
the SVM amplitude and phase 
scintillation detectors using 
novel data from the training 

data sites (subplots (a)) and sites not 
involved in training (subplots (b)). Only 
the linear SVM technique is used for 
testing as it shows similar performance 
to the medium Gaussian SVM in the 
validation, and is easier to implement.

Results in Figure 4 and Figure 5 
show that all the SVM detectors are able 
to capture strong scintillation events. 
However, for phase scintillation detec-
tion, the SVM detector trained with σϕ
features show obvious miss-detection 
of medium to weak scintillation events, 
while the detector trained without σϕ
features seem to have no problem in 
detecting weak to strong scintillation. 
This phenomenon shows that the abso-
lute values of S4 and σϕ indices alone are 
not reliable indicators of scintillation 
activity. For phase scintillation, higher 
dimension features such as the spec-
tral contents may offer a more reliable 
means to distinguish scintillation from 

SVM 
algorithm

Overall accuracy Operating point TPR Operating point FPR

Amplitude 
scintillation

Phase 
scintillation

Amplitude 
scintillation

Phase 
scintillation

Amplitude 
scintillation

Phase 
scintillation

Linear w/ 
S4 / σϕ

98.2% 92.6% 0.95 0.95 0 0.11

Gaussian 
w/ S4 / σϕ

98.7% 91.5% 0.96 0.96 0 0.14

Linear w/o 
S4 / σϕ

98.7% 92.4% 0.99 0.95 0.01 0.11

Gaussian 
w/o S4 / σϕ

98.2% 92.3% 0.97 0.96 0.01 0.13

Table 2 Validation performance of the SVM detectors for amplitude and phase scintillation in 
terms of overall accuracy, and operating point TPR and FPR

FIGURE 4  Test performance of the linear SVM amplitude scintillation detector on novel data from (a) Hong 
Kong and (b) Jicamarca, Peru. Data from Jicamarca is not involved in training. Results show that both 
linear SVMs trained with and without S4 features are able to capture major amplitude scintillation events.
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FIGURE 5  Test performance of the linear SVM phase scintillation detector on novel data from (a) Gakona and 
(b) Poker Flat. Data from Poker Flat is not involved in training. Results show that the linear SVM trained 
with σϕ features has miss-detection of weak to mediate phase scintillation events.
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other activities that impact phase mea-
surements. This is the main reason why 
a machining learning-based approach 
that exploits the high-dimensional fea-
tures can outperform traditional Ney-
man-Pearson detectors which are solely 
based on assumed models of low-order 
statistics such as scintillation indices. 

In addition, Figure 4 and Figure 5 
demonstrate that the linear SVM detec-
tors trained without S4/σϕ features have 
good generalization capabilities, as they 
are effective on novel data taken at dif-
ferent locations from the training data 
sites.

Concurrent Phase and Amplitude 
Scintillation Detection at Low Latitudes
Other than the stand-alone performance 
of the amplitude and phase scintillation 
detectors, it is also interesting to inves-
tigate the relationships in SVM detector 
performances for both amplitude and 

phase scintillation on the same data set 
from low latitude areas, where the stron-
gest scintillation events tend to occur. 
Unlike high-latitude scintillation, which 
is dominated by phase scintillation, scin-
tillation observed in the low-latitude 
area often features concurrent amplitude 
fading and rapid phase fluctuations (see 
articles from Y. Jiao et alia (2015 and 
2013), Additional Resources). Using the 
data from low-latitude stations, we are 
able to investigate this feature of low-
latitude scintillation from the perspec-
tive of detection performance. To ensure 
that we make a reasonable comparison, 
the linear SVM detectors trained with-
out S4/σϕ features are used for amplitude 
scintillation detection and phase scintil-
lation detection, respectively. 

Figure 6 show results for concur-
rent amplitude and phase scintillation 
detection using SVM on novel data from 
Hong Kong, Jicamarca (Peru), and Sin-

gapore. The results show that the SVM 
phase scintillation detector trained with 
data from Gakona, AK can effectively 
operate on data from the low-latitude 
area. This indicates that the higher 
dimensional features in phase scintilla-
tion are similar in high and low latitude 
events.

Based on visual inspection of the val-
ues of S4 and σϕ indices in Figure 6, the 
two indices are highly correlated at low 
latitudes. However, amplitude scintilla-
tion and phase scintillation detections 
are not concurrent. Results show that 
amplitude scintillation appears to be 
detected more often than phase scintil-
lation. 

To further quantify the relationship 
between concurrent amplitude and 
phase scintillation detection, Figure 7a
plots the percentage of positive phase 
scintillation detection during positive 
amplitude scintillation, with respect to 
different amplitude scintillation levels 
represented by the mean S4 values within 
its three-minute block. The data used for 
these statistics are 15 segments of novel 
data with total length of 53 hours from 
Hong Kong, Jicamarca, and Singapore. 
Figure 7a shows that the percentage of 
phase scintillation detection increases as 
the amplitude scintillation level becomes 
stronger. When the average S4 index 
within a block exceeds 0.3, a concurrent 
phase scintillation event will definitely 
be detected if an amplitude scintilla-
tion event is detected. A reverse study 
has also been conducted and the results 
are shown in Figure 7b where a positive 

FIGURE 6  Concurrent amplitude and phase scintillation detection on the same segments of novel data from (a) Hong 
Kong, (b) Jicamarca, Peru, and (c) Singapore, using linear SVM detectors trained without S4/σϕ features.
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phase scintillation detection is nearly 
always accompanied by a positive ampli-
tude scintillation detection.

The above relationships indicate that 
at low latitudes, an amplitude scintilla-
tion detector alone is sufficient to detect 
scintillation activities. Low level ampli-
tude scintillation may not be accompa-
nied by noticeable phase scintillation. 
However, all phase scintillations are 
associated with amplitude scintillations. 
This observation is important for low-
latitude scintillation monitoring because 
signal intensity measurements are more 
reliable than phase measurements at 
low latitudes. For high latitudes, phase 
scintillation detector is needed because 
phase scintillation is the dominating 
activity as described by Y. Jiao and Y.T. 
Morton (2015).

Summary and Conclusions
This article introduces a SVM-based 
machine learning algorithm for autono-
mous ionospheric amplitude and phase 
scintillation detection on GPS signals. 
The input of the detectors is the PSD of 
the raw signal intensity and the detrend-
ed phase measurements. Instead of hav-
ing to acquire knowledge of the PDFs of 
the signals, the machine learning algo-
rithm learns the different high-dimen-
sional features for non-scintillation and 
scintillation events from the training 
data, and automatically generates a dis-
criminative hyperplane to optimally 
separate the two classes with the maxi-
mum separation space. 

The trained SVM amplitude and 
phase scintillation detectors were eval-
uated in validation and testing, which 
demonstrate good validation perfor-
mance and generalization capability in 
testing. A summary of the findings and 
conclusions in this work is recapitulated 
below:
• The overall accuracies in the valida-

tion are around 98% and 92% for the 
SVM amplitude scintillation detec-
tor and phase scintillation detector, 
respectively.

• Linear and medium Gaussian kernel 
SVM perform similarly for scintilla-
tion detection.

• Excluding S4/σϕ features in the train-
ing vector does not affect the valida-
tion performance. 

• Testing on novel data reveals miss-
detection of weak to moderate phase 
scintillation events using the SVM 
phase detector trained with σϕ fea-
tures. This result shows that phase 
scintillation index values may not be 
a good indicator of the scintillation 
activity. Future development of the 
phase scintillation detector should 
mainly be based on features in the 
frequency domain, instead of the 
absolute values of phase fluctuations.

• The SVM detectors can be expanded 
to work for data from other sites not 
involved in training. 

• The detection of amplitude and 
phase scintillation may not be simul-
taneous with similarly implemented 
SVM detection techniques. At low 
latitudes, whenever phase scintilla-
tion is detected, it is almost certain 
that amplitude scintillation will be 
detected at the same time. On the 
other hand, when amplitude scintil-
lation is detected, phase scintillation 
may not be simultaneously detected 
but the likelihood increases as scin-
tillation intensifies. 

Manufacturers
The commercial ISM receivers used were 
the PolaRxS manufactured by Septen-
trio, which is headquartered in Leuven, 
Belgium, and has offices in Torrance, 
California, and Hong Kong. 
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