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   GNSS 
Solutions: 

How do you compute 
a relative position 
using GNSS?

In many applications the absolute 
position of an object is less impor-
tant than the relative position to 
other objects in the vicinity. An 

obvious example is a collision avoid-
ance system, wherein the proximity of 
nearly vehicles is much more impor-
tant than whether the vehicles are 
located on street “X” or “Y.” 

Although many sensors can be 
used for determining relative position 
— for example, radar, lidar, vision and 
ultra-wideband — GNSS can also be 
used. In fact, as will be shown later, any 
form of differential GNSS processing 
is a form of relative positioning. This 
includes GNSS attitude determination, 
vehicle-to-vehicle (V2V) and, vehicle-
to-infrastructure (V2I) applications. 

Standalone Positioning
Before looking at the relative position-
ing problem, let’s quickly review the 
idea of absolute positioning. 

The pseudorange to a satellite 
measured from receiver “a” is given by

where ρ is the geometric range between 
the receiver and the satellite, b is the 
receiver clock bias, and ε is the com-
posite measurement error. The geo-
metric range term is a function of the 
position of the satellite, , and receiver, 

, and thus equation (1) can be written 
more explicitly as

The geometric range term is a non-
linear function of the desired receiver 
position, , and can be approximated 

by linearizing around the current best 
estimates of the position, , as follows

where  is the error in the current 
estimate of the receiver position such 
that . The unit vector, , is 
defined as 

Strictly speaking, this unit 
vector should be computed from the 
estimated position vector (i.e., replace 

 with ), but given the large distances 
to the satellites and the typically 
small magnitude of  (we will revisit 
this point later), the differences can 
be neglected and the simplified 
notation, adopted. Figure 1 illustrates 
the relationship between the relevant 
vectors.

Substituting equation (3) into 
equation (2) and performing some 
simple algebra gives

The matrix notation is included 
to illustrate how the left-hand side 
can be expressed as a function of 
the unknowns  and ba for a single 
satellite. However, by combining 
observations from multiple satellites, 
equation (5) forms the basis for 
computing a recursive least-squares 
estimate of unknown parameters. 

Before moving on, it is worth 
noting that equation (5)is only a 
function of the absolute position (error) 
of the receiver. Correspondingly, 
standalone positioning is a form of 
absolute positioning. In the next 
section, we contrast this case with case 
of differential positioning.

Differential Positioning
As is well known, differential position-
ing involves two receivers. Although 

Relative 
Positions

“GNSS Solutions” is a 
regular column featuring 

questions and answers 
about technical aspects of 
GNSS. Readers are invited 
to send their questions to 

the columnist, Dr. Mark 
Petovello, Department of 

Geomatics Engineering, 
University of Calgary, who 
will find experts to answer 

them. His e-mail address 
can be found with  

his biography.

Mark Petovello is a Professor 
in the Department of Geomatics  
Engineering at the University of 
Calgary. He has been actively 
involved in many aspects of 
positioning and navigation 
since 1997 including GNSS 
algorithm development, inertial 
navigation, sensor integration, 
and software development. 

Email: mark.petovello@ 
ucalgary.ca



www.insidegnss.com   M A Y / J U N E  2 0 1 4  InsideGNSS 39

one receiver — typically called a base station/receiver — is 
commonly assumed to be located at a known point, this is 
not a requirement. The following development starts with the 
case where both receiver positions are unknown. Once this 
is explored, we will discuss the special case of a known base 
station position.

Assuming receivers a and b measure pseudoranges 
at the same time, the between-receiver single difference 
pseudorange can be written as

where Δ(•) is the between-receiver single different operator. 
Using the expansion from equation (3) (with appropriate 
substitutions for the receiver subscript) and bringing the geo-
metric range estimates to the left-hand side of the equation 
gives

With reference to equation (4) and Figure 2, the unit 
vector associated with receiver “b” can be written as

where  is the relative position vector between receivers “a” 
and “b.” Substituting this into equation (7) and rearranging 
gives

where  is the error in the current best estimate of the 
relative receiver vector. In other words, differential process-
ing provides a direct estimate of the relative position (error), 
not the absolute position. 

Relative versus Absolute  
Differential Positioning
Let’s return to the idea of a base station receiver at a known 
location. Assuming receiver b to be the base station, the  
term is zero and thus . Equation (9) then reduces 
to

which is similar to equation (5) in that the terms on the right-
hand side are only a function of the absolute position (error) 
of receiver “a.”

The other 
differences are that 
we now estimate 
the relative clock 
error between the 
receivers (which 
is usually treated 
as a nuisance 
parameter) and 
the errors are 
reduced compared 
to the standalone 
case, which, of 
course, is the 
main motivation 
for differential 
processing. 

Most people 
will be familiar 
with this approach 
to differential 

processing and, not surprisingly, we frequently hear claims 
that “differential techniques are used to compute the absolute 
position.” However, the key point is that absolute positioning 
is a special case of relative positioning in which the base 
station coordinates are known in an absolute sense.

However, scenarios exist in which the base station 
coordinates are not known. For such cases, we need to 
consider all terms in equation (9). To this end, the second 
term on the right-hand side of equation (9) is effectively 
an additional error that arises if/when the base station 
coordinates are incorrect. In most cases, this error is 
negligible because the denominator is so large — roughly 
20,000 kilometers — compared to the numerator. 

In particular, for applications such as V2V, V2I and 
GNSS attitude determination, the inter-receiver distances 
are generally small, typically less than a few hundred meters. 
Furthermore, even if the base station position is determined 

FIGURE 1  Illustration of Standalone Positioning
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GNSS Solutions continued from page 39

using standalone positioning 
techniques, the resulting error will 
almost always be less than 100 meters. 

Even if one pessimistically 
assumes the base station error and the 
inter-receiver distance are both one 
kilometer, the second term in equation 
(9) has a maximum possible value of 
about five centimeters [= (1 km)2 / 
20,000 km], which is quite small (at 
least for pseudorange measurements).

Where the effect of base station 
error can become a problem is when 
very large inter-receiver distances are 
considered. A few examples of this 
are included in the M.Sc. thesis by 
C. Tang (“Accuracy and Reliability 
of Various DGPS Approaches”, 
May 1996, University of Calgary, 
UCGE Report No. 20095, available at 
<http://www.geomatics.ucalgary.ca/
graduatetheses>). 

Summary
The key takeaway from this discussion 
is that differential processing of GNSS 

data ultimately produces an estimate of 
the relative position of the two receiv-
ers involved. Only if the base station 
coordinates are known in an abso-
lute sense are the coordinates of user 
receivers also absolute in nature.

Another point worth noting is that 
although the foregoing mathematical 
development focused on the use of 
pseudorange measurements, the same 
development also applies to carrier 
phase data. The main difference in 
the latter case is that the carrier phase 
ambiguity terms need to be included. 
Also, because the carrier phase 
measurement errors are smaller than 
those of the pseudorange (in terms of 
noise and multipath), carrier phase 
processing is a bit more sensitive to 
base station positioning errors.

We should also note that, even 
though carrier phase process often uses 
double differencing techniques, the 
between-satellite difference does not 
negate any of the above development. 
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