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The signal-processing methods 
currently used to detect inter-
fering signals have reached their 
practical limits and have little 

more to offer in dealing with problem 
of very weak signal detection. The most 
popular of these include:
• the Fast Fourier Transform (FFT), 

which directly transforms a signal 
into its spectral representation

• the Short Time Fourier Transform 
(STFT), based on the Fourier Trans-
form (FT), which gives information 
about frequency and time of the sig-
nal

• the Wigner-Ville probability distri-
bution, which also provides frequen-
cy and time information. 
This column presents a very com-

petitive alternative to FT, namely the 
Karhunen-Loève Transform (KLT). 

In contrast to the FT, the KLT offers a 
solution to problems that are today still 
intractable.

The KLT has indeed been proposed 
for applications to process the signals 
collected by astronomers worldwide in 
the framework of the SETI program 
(Search for Extra Terrestrial Intel-
ligence). In a 2010 paper (cited in the 
Additional Resources section at the end 
of this column), Dr. Claudio Maccone 
presented his most recent discoveries 
concerning the KLT theory and its appli-
cation to the detection of very weak sig-
nals hidden in noise. He also presented 
an example of the successful detection 
of an unknown sinusoidal signal with 
a signal-to-noise ratio (SNR) of as low 
as -23 decibels. He concluded that an 
even lower SNR could be mastered by 
the KLT. 

Following the ideas of the SETI sci-
entists, this column will first discuss the 
advantages and limitations of the KLT, 

especially with respect to its application 
to detect typical interferences of GNSS 
signals. After providing some theoretical 
insight into the KLT approach, we will 
present examples of a successful detec-
tion of a very weak wideband signal, 
including a performance comparison of 
the KLT to the FFT, the STFT, and the 
Wigner-Ville methods.

KLT: Worth Our Attention
The KLT was not chosen for weak sig-
nal detection by accident. Several factors 
explain why KLT could be an appropri-
ate mathematical tool for that purpose. 
As the Fourier Transform is of para-
mount importance in signal processing 
nowadays, this article uses it as the refer-
ence transform against which the KLT 
properties are compared. 

The main advantages of the KLT 
compared to the FT are the following:
1. The KLT works equally well for nar-

rowband and  wideband signals, 
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while the FT is optimized for nar-
rowband signals only. This feature 
makes the KLT more adjustable to 
bandwidths characteristic for GNSS 
signals.

2. Both transforms decompose the 
signal using a set of base functions. 
When comparing these functions, 
one notices that the KLT is a more 
flexible transform, because its basis 
functions can be of any form. This 
results in a better decomposition of 
the signal. The FT is very limited 
here because its basis functions are 
strictly limited to sines and cosines.

3. The KLT merges deterministic and 
stochastic analyses of the signal, 
which is a very powerful attribute not 
found in other methods. Although 
the set of KLT basis functions is 
deterministic, it does also provide 
information on the stochastic nature 
of the signal, rather characterizing an 
expectation of the power of the basis 
functions than their exact value. 
Consequently the KLT grades the 
basis functions with respect to their 
probable power contribution thus 
allowing one to efficiently distin-
guish the signal from the noise. This 
implies that, when using the KLT, 
the processed signal can be filtered 
by keeping only the most interesting, 
non-stochastic part and omitting the 
rest, which is then defined as back-
ground noise. On the other hand, 
when using FT an exact power value 
can be determined to each sine and 
cosine, this being the only parameter 
defining the signal.

4. Finally, according to experiments 
performed by Maccone and present-
ed in the previously cited paper, the 
KLT is able to detect much weaker 
signals than the FT. Although this 
capability still must be confirmed by 
practical applications, it could have 
an enormous influence in the future.

In spite of its significant advantages, 
the KLT has not replaced FTs yet. In par-
ticular, associated complexity and, thus, 
the computational burden still speak 
against KLT and in fact favor classical 
FFT. The Fourier Transform has its fast, 

numerical implementation called Fast 
Fourier Transform with a complexity of 
O(n*log(n)) (i.e. n*log(n) addition/multi-
plication operations on data of length n). 
The complexity of the numerical imple-
mentation of the KLT is much higher 
— O(n2). 

The underlying reason for this dif-
ference is that the FFT uses a predefined 
set of orthogonal functions (sines and 
cosines), whereas the KLT looks for the 
best representation of the orthogonal 
function for each individual signal. A 
comparative summary of the charac-
terizations is presented in Table 1.

KLT and FFT – Analogies and 
Differences
The Karhunen-Loève Transform and the 
Fourier Transform have many analogies 
but also important differences. To gain 
further insight into the mathematical 
characteristics of each of them, let us 
compare the equations for the Fourier 
series of a deterministic periodic signal 
x(t) and its analogous KL expansion of 
a stochastic process of the signal X(t) 
are compared. (Stochastic variables are 
denoted by capitals).

As is well known, any periodic signal 
can be expressed in terms of a Fourier 
series as follows:

where the angular frequencies are 
defined by ωn = n(2π / T) with the period 
of the signal being T=t2-t1. 

This equation defines a deterministic 
signal x(t) as a sum of sines and cosines 
that have an amplitude equal to the cor-
responding coefficients an and bn. The 
norm of the square of these coefficients 
gives information about the power at 
the correspondent to the coefficients 
frequency. By definition, the FFT basis 

functions are extended between minus 
infinity and infinity, which allows the 
calculation of the exact amplitudes of 
the functions for each frequency.

The coefficients an and bn of the Fou-
rier series are defined by the following 
formulas:

and

These are integrated projections of 
the sine and cosine on the signal. 

Applying the KLT methodology to 
a stochastic process X(t) over the finite 
time interval 0≤t≤T can be represented 
by equation (4) which shows some anal-
ogies to the Fourier series:

The deterministic functions Φn(t) 
are called eigenvectors or eigenfunctions, 
while Zn are random scalar variables. 
This is a very short equation but the 
consequences and possibilities stand-
ing behind it are enormous. As we can 
see, this is a generic decomposition in 
vectorial space using eigenfunctions, 
which can have in principle any form. 
We should mention that, in both the 
Fourier series and the KL expansion, 
the eigenfunctions have to be ortho- 
normal, i.e., orthogonal and normal-
ized to one. In effect, these functions are 
uncorrelated and can be a base of any 
signal in infinite dimensional Euclidean 
space spanned by these functions. 

Another important note: the eigen-
functions Φn(t) are to the KL expansion 
what the set of sines and cosines is to the 
Fourier series. However, the eigenfunc-
tions’ shape is in principle unknown and 

Fast Fourier Transform Karhunen-Loève Transform

Decomposition functions Sines and cosines Any orthonormal functions

Type of signal analysis Deterministic Deterministic and stochastic

Optimal frequency range Narrowband signals Narrowband and  wideband signals

Potential to detect feeble signal Small High

Complexity O(n*log(n)) O(n2)

TABLE 1.  Comparison of selected charactertistics of the Fast Fourier Transform and Karhunen-Loève Transform 
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adapts to the signal being processed. 
Also, unlike the Fourier series, the KLT 
eigenfunctions have a finite support, 
making the requirement for a periodic 
signal unnecessary. This is an important 
advantage of the KL expansion com-
pared to the FT, because the data to be 
processed usually has a finite duration. 

But the most revolutionary aspect of 
the KL expansion is still to come.

Unlike the FT, the coefficients Zn of 
the KL expansion of a stochastic process 
X(t) are pure random variables. In con-
trast to an and bn of the Fourier series, 
the KL coefficients reflect the stochastic 
nature of the data under analysis. In his 
work, Maccone proposed computation 
of the random variable Zn by using a very 
similar equation as the formulas (2) and 
(3):

Similar to the coefficients of the Fou-
rier series, equation (5) describes the 
projection of the processed signal onto 
eigenfunctions. It is worth highlighting 
the fact that the integral boundaries, 
which are finite, cover the entire signal 
duration 0≤t≤T; thus, KLT also applies 
well for non-periodic signals.

We must emphasize that the vari-
ance of the KL expansion coefficients Zn 
is more important than the coefficients 
themselves. This variance is called eigen-
value and is denoted λn. 

The eigenvalue λn  corresponds to 
Φn(t) and represents the expected power 
of the corresponding eigenfunction and 
is significant for the filtering capabilities 
of the KLT, which can be used for detec-
tion of feeble signals. Theoretically, what 
Maccone demonstrates in his article is 
that a signal containing only pure noise 
is characterized by KLT eigenvalues, 
which are uniformly distributed and 
equal to one. This is true for a continu-
ous signal only. Consequently, we can 
already state that eigenvalues larger than 
one can identify that a corresponding 
eigenfunction is correlating better with 
the hidden signal than with the remain-
ing noise.

So, how does one compute the eigen-
values and eigenfunctions of a signal? The 

KLT computes the covariance of a pro-
cessed signal which is then used to find its 
eigenvalues and eigenvectors. The follow-
ing equations are derived in Maccone’s 
article, with (6) providing a fundamental 
equation to compute the unknown eigen-
values and eigenfunctions:

Equation (6) is analytically derived 
from the KL expansion equation (4). In 
this equation E{X(t1)X(t2)} represents the 
autocorrelation of a stochastic process 
X(t) at instants t1 and t2. This is the only 
known variable of this equation. The 
linear autocorrelation function is calcu-
lated directly from the processed signal. 

Thanks to this, the eigenfunction 
characterize the structure of a processed 
signal at the same time that it becomes 
sensitive to the signal’s harmonic behav-
ior. This is the main advantage of the 
KLT over the FT. Because of this sensi-
tivity it is now possible to identify eigen-
functions related to the non-stochastic 
content of the signal. As mentioned ear-
lier, a parameter that allows this identi-
fication is the eigenvalue. 

During simulations for which results 
are presented later in this article, dis-
crete signals were processed and the 
length of the autocorrelation was finite. 
Under these conditions, the eigenvalues 
of a noise-only signal converge to one 
and are equal to one on average. 

For digital applications we work on 
sampled signals. So, as usual, replacing 
the integral by summation brings us 
from continuous to discrete data, thus:

which is a set of N linear equations with 
N unknowns; E{XkXl} is a Toeplitz auto-
correlation matrix of the size NxN, and, 
finally, Δt denotes time duration of the 
sample. 

Equation (7) is solved with the rules 
of classical linear algebra. Eigenvalues 
and eigenvectors can be determined 
using common methods. This equation 
can always be solved; however, the only 
drawback of the KLT resides here. This 
set of equations carries with it a signifi-

cant computational burden on the order 
of O(N2). Maccone demonstrated the 
first successful approach to the problem 
of computation time, which will be dis-
cussed later on in this article.

This theoretical introduction leads us 
to the practical part. Our purpose here 
was to investigate the capabilities of the 
KLT as applied to weak signal detection, 
especially those that can be harmful to 
GNSS signals on the receiver side and 
are to be detected from far distance.  

In order to gain better insight into 
the detection capabilities offered by the 
various well-known methodologies, we 
tested them using the same input data. 
We structured the tests in three stages. 
The first example demonstrates how the 
KLT decomposes a signal and identi-
fies the eigenvalues and eigenfunctions 
of the data. Next, a narrowband, single 
sinusoidal signal was selected to check 
the performance of the KLT. 

The final example addresses the 
wideband signal detection capabilities of 
the various approaches. We carried out 
the last exercise (or stage) for two kinds 
of signals: a BPSK (binary phase shift 
keying) modulated signal, representing a 
stationary signal to reveal the KLT’s lim-
itations on wideband signals (Example 
3) and a wideband chirp, which repre-
sents Example 4 and enabled the testing 
of the KLT’s behavior in the presence of 
a non-stationary signal. 

example 1: Decomposition 
of the signal
This simple example shows how the 
decomposition of a signal X(t) is per-
formed using the KLT. The decomposi-
tion starts with the computation of the 
linear autocorrelation function of the 
received signal. The next step is to build 
an autocorrelation Toeplitz matrix and 
use equation (7) to solve a set of linear 
equations. The result of this equation 
is the set of eigenvalues and their cor-
responding eigenfunctions.

The parameters presented in Table 2 
were selected for this example.

Figure 1 shows the time representa-
tion of the example signal. Because the 
sine signal component shows up at the 
identical power level as the noise com-
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ponent, the desired signal can barely be 
identified in the plot.  

Figure 2 presents the computed eigen-
values and the corresponding eigen-
functions of the signal. The plot clearly 
shows that the first two eigenvalues are 
significantly higher than all others. The 
first two eigenfunctions corresponding 
to these eigenvalues are also character-
istic as they show sine-like behavior of a 
frequency of one hertz, which relates to 
the hidden sine in the processed signal.

Moreover, the eigenfunctions allow 
us to distinguish the non-stochastic con-
tent of the signal from the noise content, 
which is represented by the remaining 
eigenfunctions. 

example 2: 
narrowband 
signal 
Detection
Having illustrated 
the decomposition 
of a simple signal in 
low noise environ-
ment using the KLT, 
the next step is to 
investigate the limits 

of the KLT technique to detect signals 
in very strong noise environment. In the 
following test the KLT performance is 
compared also against that of an FFT. 
Note that only one eigenfunction is used 
to estimate the signal. 

However, any number of computed 
eigenfunctions may be chosen, depend-
ing on the level of filtering required. 
The more eigenfunctions you consider, 
the more information about the signal 
(including noise) becomes part of the 
estimation. Table 3 presents the param-
eters selected for this example.

From Table 3 we can see that the 
frequency resolution of the estimated 
spectrum is different for both methods. 
The FFT resolution is inversely propor-

tional to the signal length while the KLT 
is inversely proportional to the length 
of the autocorrelation function (ACF). 
Because the ACF length is shorter than 
the signal length, the FFT provides bet-
ter spectral resolution.

The comparative results of signal 
detection for FFT and KLT are present-
ed in Figure 3, which clearly shows that 
the KLT detects a hidden non-stochastic 
signal with much higher sensitivity than 
the FFT does. The peak of the hidden 
signal frequency as detected by the KLT 
is very high and leaves no doubt whether 
this is the desired signal or noise. The 
power spectrum estimates resulting 
from use of an FFT technique are much 
more difficult to interpret.

To complement the overview of this 
simulation scenario, Figure 4 shows the 
first 10 eigenvalues (out of a total of 500) 
of a signal derived using KLT estimation. 
Eigenvalues of the signal + noise are rep-
resented in black; eigenvalues of only the 
noise component are indicated in red. 
As in Figure 2, the first two eigenvalues 
clearly stick out. Additional simulations 
could verify that this behavior is typical 
for a single sine signal hidden in noise. 

Decomposition method KLT

Hidden signal type Sine at 1 Hz

Signal length 10 samples

Sampling frequency 10 Hz

autocorrelation function 
(ACF) length

10 samples

SNR 0 dB

TABLE 2.  Simulation parameters; decomposition of 
the sine signal
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FIGURE 3  Power spectrum estimates applying FFT and KLT techniques

Power Spectrum estimation method FFT KLT

Hidden signal type Sine at 1 MHz

Signal length 1,000 samples

Sampling frequency 8 MHz

Autocorrelation function (ACF) length N/A 500 samples

Number of eigenfunctions taken for the estimation N/A 1

Resolution 8,000Hz 16,000Hz

SNR -16 dB

TABLE 3.  Simulation parameters, narrowband signal detection
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We also want to highlight the fact that a significantly higher 
eigenvalue is not the only requirement for the KLT being able 
to detect a non-stochastic signal correctly. The eigenvalue cor-
responding to the desired signal also has to be higher than the 
corresponding eigenvalue of the noise. Although each noise 

eigenvalue in theory is equal to one in numerical calculations, 
only the average of all eigenvalues is equal to one. Therefore, 
individual noise eigenvalues are different from one; conse-
quently, we cannot rely on a threshold equal to one to distin-
guish between noise and signal. 

In Figure 4 the first two noise eigenvalues are clearly not 
close to one, but higher.  By using a longer autocorrelation func-
tion, the noise eigenvalues converge to one, but they are still not 
uniformly distributed.

example 3: Wideband signal Detection
The previous example showed that the KLT performs better 
than the FFT in narrowband signal detection. Next, the KLT is 
applied to wideband signals. A BPSK-modulated signal serves 
as the sample signal for detection.

We present the results in the time-frequency domain (see, 
for example Figure 5). This allows us to see changes in the esti-
mated spectrums for different instants of a signal observation. 

A fundamental requirement for achieving a proper estima-
tion of the spectrum is the selection of a windowing function 
that preserves the original spectral characteristics of the signal 
without introducing significant distortions due to the estima-
tion process. 

In the article by G. Heinzel et alia cited in Additional 
Resources, the HFT90D window type is proposed as opti-
mum for narrowband signals because it determines the exact 
amplitude of a sinusoidal component. Further analyses are 
recommended to determine a most appropriate window for 
wideband signals. Nevertheless and for demonstration pur-
poses the HFT90D window is made use of in the following 
wideband example. 

Compared to other flat-top windows — those window func-
tions that are as flat as possible in the frequency domain — the 
HFT90D has a relatively narrow three-decibel bandwidth and 
very strong side-lobe attenuation. According to G. Heinzel 
et alia, the recommended overlapping of window functions 
applied to the datastream is 76 percent. Table 4 lists the param-
eters selected for the wideband signal detection example.

In order to achieve a sufficiently high-frequency resolution 
of the power spectrum estimation using the KLT technique, 
the ACF takes 1,000 samples. This, however, comes at the cost 
of a longer computation time.

Consequently, the KLT needs a high number of eigenfunc-
tions to detect a wideband signal without losing part of the 
information that describes the non-stochastic signal. In this 
particular case 50 out of the 1,000 eigenfunctions were chosen. 
We must keep in mind, however, that the number of eigen-
functions taken to estimate the signals spectrum is indeed the 
variable KLT parameter that determines the level of filtering.

In the following sections, we present the results of applying 
KLT, STFT, and Wigner-Ville methods to detect a hidden BPSK 
signal with an SNR level of -12 decibels. For each method two 
plots are presented. The first shows the spectrogram of the pro-
cessed signal, and the second plot shows the power spectrum 
estimation obtained by averaging the spectrogram.
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FIGURE 4  Eigenvalues of the signal. Black asterisks are the eigenvalues 
of the received signal + noise, and red ones are the eigenvalues of the 
noise component in this signal.
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FIGURE 5  The KLT spectrogram and power spectrum estimation; BPSK(1) 
signal, SNR = -12 decibels

Power Spectrum estimation method STFT Wigner-Ville Method KLT

Hidden signal type BPSK(1) modulated with fundamental 
frequency equal to 1.023MHz

Signal length 100,000 samples

Sampling frequency 10MHz

Window length 10,000 samples

Window type HFT90D

Window overlapping 76%

Autocorrelation function (ACF) 
length

N/A N/A 1,000 
samples

Number of eigenfunctions taken to 
the estimation

N/A N/A 50

Frequency resolution 1,000Hz 1,000Hz 10,000Hz

Time resolution 263 microseconds

SNR -12 dB

TABLE 4.  Simulation parameters; wideband signal detection - BPSK(1) modulated 
signal
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KLT
The top plot in Figure 5 shows the spec-
trogram of the signal computed by the 
Karhunen-Loève Transform. Most of 
the power clearly appears to be located 
in the lower band of the spectrum, with 
much less power at higher frequencies. 
However, this spectrogram may not be 
precise enough to correctly identify the 
BPSK signal. Therefore, the data is aver-
aged over time, with the obtained power 
spectrum estimation of the averaged 
spectrogram (lower plot) resembling 
quite clearly the BPSK(1) signal.

sTFT
In similar fashion as Figure 5, Figure 
6 provides the results of the spectrum 
estimation using a Short Time Fourier 

Transform. The spectrogram as well as 
the power spectrum show that the STFT 
method fails to detect the wideband signal. 

Still, the lower frequencies have 
slightly more power compared to the 
average. However, the noise dominates 
the signal; so, we cannot recognize the 
BPSK(1) signal.

Wigner-Ville
Figure 7 shows the results using the 
Wigner-Ville method. As with STFT, 
Wigner-Ville fails to detect the wide-
band signal.

To summarize the preceding simu-
lation results, one can observe that the 
KLT technique indeed is able to detect 
wideband signals even in the presence 
of very strong noise, whereas the STFT 

and Wigner-Ville methods clearly fail. 
Moreover, one can see that, even though 
the SNR level is slightly higher com-
pared that used in Example 2 (narrow-
band signal detection), more samples of 
the signal were required for estimating 
the power spectrum. A wideband signal 
carries a lot of information that has to 
be observed for a longer period of time 
compared to a narrowband signal in 
order to recognize its non-stochastic 
structure.

example 4: Chirp signal 
Detection
We also analyzed a chirp signal with a 
wide frequency boundary. This type of 
signal was chosen to enable us to evalu-
ate the performance of KLT in detecting 
a dynamic, non-stationary signal. Table 5 
lists the simulation parameters for this test.

In order to be able to achieve a spec-
trogram estimation with good time reso-
lution, the window length was shortened 
to 1,000 samples. Also the ACF length 
was reduced to 500 samples. This setting 
speeds up the simulation, but reduce the 
frequency resolution of the KLT spec-
trum estimation.

Figure 8 shows the KLT spectrogram 
and the power spectrum. For a signal with 
SNR = -12dB the spectrogram is a little 
frayed but still readable. The KLT is able to 
detect the chirp signal in the noise. 

The challenge here is to define a 
proper observation window length. It 
has to be long enough to detect the sig-

FIGURE 6  The STFT spectrogram and power spectrum estimation; BPSK(1); 
SNR = -12dB
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FIGURE 7  The Wigner-Ville spectrogram and power spectrum estimation; 
BPSK(1); SNR = -12dB
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Power Spectrum Estimation Method STFT Wigner-Ville method KLT

Hidden signal type Linear chirp, frequency range: (0.5-2MHz), chirp time: 
1millisecond

Signal length 100,000 samples

Sampling frequency 10MHz

Window length 1000 samples

Window type HFT90D

Window overlapping 76%

Autocorrelation function (ACF) length N/A N/A 500 samples

Number of eigenfunctions taken for the estimation N/A N/A 2

Frequency resolution 10,000Hz 10,000Hz 20,000Hz

Time resolution 24.2 microseconds

SNR -12 dB

TABLE 5.  Simulation parameters; wideband signal detection - chirp modulated signal
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nal but also short enough to reach the 
required time resolution. If only a short 
time period of the signal is considered, 
the detection process for a chirp signal is 
similar to the detection of a narrowband 
signal and, therefore, allows us to rely on 
only a few initial eigenfunctions.

Although results are not shown here, 
as in the previous example the STFT and 
Wigner-Ville methods both failed to 
detect the chirp signal under the given 
conditions. 

BAM-KLT: A step Closer to 
Fast KLT
Again, the biggest drawback of the KLT 
is its complexity and the resulting high 
computational burden. As with the Fou-
rier Transform, however, which become 
popular when its fast implementation 
(the FFT) became available, the KLT 
has the potential to experience a simi-
lar boost if a fast KLT implementation 
is discovered.

Maccone has already presented 
an innovative way of using the KLT, 
which paves the way towards a faster 
algorithm. He called this method the 

BAM-KLT (Bordered Autocorrelation 
Method KLT), and his paper provides an 
example of successful sine signal detec-
tion using the BAM-KLT to correctly 
detect a signal hidden in noise (SNR = 
-23 decibels), while the FFT failed. 

This work uncovered the fact that 
eigenvalues are functions of a final 
instant T (the same T that appears in 
the definition of the KL expansion of 
the final instant of the signal). Using 
this discovery, Maccone defined “the 
Final Variance Theorem” expressed by 
an equation:

This theorem states that the variance 
of a stochastic process X(t) is equal to the 
sum of the series of partial derivatives 
of eigenvalues λn(T) with respect to the 
final instant T. Computing a spectrum 
of such a partial derivative was found to 
obtain the partial spectrum of the signal. 
Similar to the KL expansion, the first 
terms — i.e., the partial derivatives of 
the eigenvalues — contain the most use-
ful information about the non-stochastic 
content of the signal. 

In theory, using this method in signal 
processing, one could reduce the compu-
tational burden. Instead of calculating 
both eigenfunctions and eigenvalues, 
just determining the set of eigenvalues 
is now sufficient. Additionally, the KLT 
filtering feature can also be used in this 
theorem. If only that information kept 
in the derivative of the first eigenvalue 
is used, equation (8) can be simplified to:

We must point out that BAM-KLT 
is still a technique that needs to be 
explored and further tested before it can 
be used in a predictable manner. 

As an example, BAM-KLT shows 
unwanted behavior at one half of the 
Nyquist frequency: When using normal 
frequency representation for the signal 
spectrum, the signal is displayed at twice 
its original frequency.  This problem was 
discussed in the paper by Maccone, but 
not solved. 

Based on the parameters in Table 6, 
the following simulation shows another, 
very interesting behavior of the eigenval-
ues beyond those discussed by Maccone, 
which requires further explanation.

Let’s consider only the first two 
eigenvalues of the signal as a function 
of the time interval and their derivatives. 
The eigenvalues are plotted in Figure 9. 
By definition the first eigenvalue always 
has to be bigger than the second one. But 
here it seems that the first two eigenval-
ues become equal at some points. Those 
represent points of discontinuity of the 
eigenvalue functions of the time interval. 
These eigenvalues might also be related 
to each other, which was not expected. 

One possible explanation could lie in 
the eigenfunctions. They are orthogonal, 
but they can also have the same spectrum 
representation (like, for example, sine 
and cosine). As a consequence, depend-
ing on the time span of the signal, one 
eigenfunction or another has the biggest 
chance to appear in the signal. 

The situation becomes even more 
complicated when one is processing 
more complex signals. In that case, one 
can observe that the eigenvalues inter-
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Power Spectrum estimation method BAM-KLT

Signal type Sine at 500Hz 
without noise

Signal length 200 samples

Sampling frequency 16kHz

autocorrelation function (ACF) 
length

200 samples

number of eigenfunctions taken to 
the estimation

2

TABLE 6.  Simulation parameters for the BAM-KLT 
example

FIGURE 9  The first and the second eigenvalue of a sine signal computed 
using BAM-KLT
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FIGURE 8  Spectrogram KLT; chirp; SNR = -12 dB
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both plots. The signal detection capa-
bility of BAM-KLT is much worse than 
the one of the original KLT examples 
(Figures 5 and 6) and even worse than 
what was obtained using the STFT and 
Wigner-Ville methods. Obviously, the 
BPSK signal cannot be detected by the 
BAM-KLT for the given conditions.

BAM-KLT and Chirp signal 
Detection
BAM-KLT shows a much better perfor-
mance when it comes to chirp signals. 
But it is, of course, still not as good as 
the original KLT. From the spectro-
gram (Figure 11) it can be seen that the 
chirp was detected successfully. None-
theless, a very strong DC component 
appears in the spectrum, which could 
make the detection of a low-frequency 
signal impossible. One can say that the 
BAM-KLT is already powerful enough 
to detect narrowband signals, excluding 
low-frequency signals, which are buried 
by strong DC component observed in 
the plots.

Conclusions
This article shows that the KLT tech-
nique has very high potential and can 
outperform the classical signal detec-
tion methods that are used today. The 
KLT is equally capable of detecting 
both narrowband and wideband sig-
nals, which deserves close attention if 
we think of future applications in the 
field of GNSS. 

The simulations 
presented here indi-
cate that this trans-
form allows us to 
detect more feeble 

weave not only in pairs but also with 
further “neighbors.”

This has an effect on the derivatives 
as well. When computing the FFT of the 
derivatives of the first and the second 
eigenvalue, the result is a spectrum sine 
with harmonics, because of the discon-
tinuity of the function. Moreover, the 
derivatives contain a direct current (DC) 
component because the mean value of 
the function is not equal to zero.

This issue is presented here to make 
users aware of the unexpected behaviour 
of the BAM-KLT and also to show areas 
for improvement and future investigation.

BAM-KLT and  Wideband 
signals
Because very promising results of single-
tone detection in a strong noise were pre-
sented in Maccone’s paper, we thought it 
worthwhile to test the detection capabil-
ities of BAM-KLT for wideband signals. 
The following results are based on iden-
tical test conditions as in the previous 
tests for estimation of a wideband sig-
nal spectrum. First the results of hidden 
BPSK(1) signal detection are presented, 
followed by the detection of a chirp.

As in the previous examples of BPSK 
signal detection, Figure 10 presents the 
result as a spectrogram and the power 
spectrum estimation. Unfortunately, the 
BPSK(1) characteristic is not visible and, 
therefore, the signal detection fails. 

A typical behavior of the BAM-KLT 
is the dominating DC component in 

signals than FFT, STFT, and Wigner-
Ville methods can. The main strength of 
the KLT is its natural feature of adapting 
to the characteristics of the processed 
signal. As a result, it allows the filtering 
of a non-stochastic signal from noise. 

The KLT is also more f lexible and 
configurable than other known method-
ologies. This permits the user to directly 
control the level of filtering. The remark-
able detection capabilities of KLT, how-
ever, must be paid for by a high compu-
tational burden.

 BAM-KLT, which shows excellent 
detection performance when applied 
to pure sinusoidal functions, is capable 
of significantly reducing the computa-
tional load. Therefore, some analogies 
between the BAM-KLT and the FFT 
can be drawn. Indeed, the introduction 
of the FFT made it possible to exploit 
the Fourier Transform in a numerically 
efficient way. 

A similar future could be expected 
for the BAM-KLT. However, before 
BAM-KLT or a closely related method-
ology can be efficiently applied, the spec-
trum of detectable signals needs to be 
significantly enlarged. This article shows 
that the BAM-KLT is not yet capable of 
unambiguously detecting wideband sig-
nals such as BPSKs appearing as noise 
or interference in a GNSS-like signal. 
So, further research work needs to be 
invested in this area. One potential start-
ing point could be to identify relations 
between the signals to be detected, the 
windowing function, and the number of 
characteristic eigenvalues. 

In summary, we can say that the KLT 
is a very high-performing mathematical 
tool and could prove to be of great value 

FIGURE 11  Spectrogram BAM-KLT; chirp; SNR = -12dB
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FIGURE 10  Spectrogram BAM-KLT; BPSK(1); SNR = -12dB
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for the detection of feeble interfering 
signals. However, the method still needs 
further development in order to become 
faster, more efficient, and easier to use. 

Future work on this topic could be 
to explore the limitations of the KLT in 
wideband signal detection, in order to 
get a better idea of the full capabilities 
of KLT in regards to wideband signals 
in general. Another promising work 
would be to reduce the complexity of a 
KLT implementation. Here the BAM-
KLT approach already offers a promis-
ing step towards a competitive signal 
analysis method that meets the needs of 
the scientific community.
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