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The usual formulation of position determination involves 
four unknowns: three physical dimensions (X,Y,Z) and 
the satellite-receiver time offset. In cases where we can 
observe five or more pseudoranges, one might well ask 

if the redundant pseudoranges could be used to check the con-
sistency among the observations —the fundamental principle 
behind receiver autonomous integrity monitoring (RAIM).

easy13 describes a technique for coping with this situation. 
In so doing, key concepts such as horizontal and vertical protec-
tion levels (HPL and VPL) are introduced. Necessarily, we also 
have to introduce some theory that motivates the procedures. 
(We will return to this topic with some further graphical illus-
trations in easy14.)

RAIM is a major technique for GNSS in many safety-criti-
cal applications. It has been with us since about 1990. Much of 
the material presented in the following relies on the work by 
B. Pervan cited in the Additional Resources section near the 
end of this article.

Let the 4 × 1 vector of unknowns be denoted x, the m × 1 
vector of observations be denoted b. A is an m × 4 matrix and 
the pertinent linear observation equation is:

The vector e contains residual errors in the observations and 
Σb is the given covariance matrix for the pseudoranges.

RAIM is activated for m ≥ 5. Presently there is no stan-
dardized RAIM method; so, we choose to present the simplest 
RAIM fault detection based on the residual norm ||e||.

We define the position error as

The estimated residuals ê equal the observations b minus 
the estimated observations

The residual vector ê is in the left nullspace of A. This means 
AT(b - A ) = 0, which are the normal equations. The compo-
nents of ê are dependent as they are computed according to (3). 
The corresponding covariance matrix is

Note that S is a projector and thus idempotent: S = SST, and 
that Σb is diagonal, while  is a full matrix! 

In order to identify the probability distribution of the 
residuals we need to transform the vector ê into independent 
components. This is done by an old trick, which implies mul-
tiplication to the left with . The factor W comes from the 
Cholesky decomposition of the covariance matrix

The transformed residual vector

has independent components. 

GPS EASY Suite II
  easy13—RAIM

In this installment of the series, the author uses Matlab to illustrate 
key principles in receiver autonomous integrity monitoring.
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Under normal conditions (small ||ê||) the weighted sum of 
squares is

The vector ê* is gaussian and independent and identically 
distributed with zero mean and variance 1:

Figure 1 graphically illustrates some basic RAIM states, 
which eventually (as illustrated in Figure 4) become four pos-
sible outcomes or “cases” experienced when using RAIM tech-
niques: normal (detected) error condition (NC), missed detec-
tion (MD), detection failure (DF), and false alarm (FA). 

A residual threshold can be set analytically using (6) to 
achieve any desired probability of false alarm under normal 
error conditions:

Given the values of m - 4 and P(FA | NC) we may solve 
(7) for the residual threshold R. The situation is depicted in 
Figure 2. The Matlab code (M-code) for plotting this figure is 
contained in the file “fap.m,” which can be found at the easy2 
webpage < http://kom.aau.dk/~borre/easy2/easy13>. 

In Figure 1 a horizontal line constraint is drawn to represent 
the protection level a. Note that, for small failure magnitudes, it 
is possible for the accuracy specification not to be breached. 

In the event that the position error δx exceeds a predefined 
protection level a, but ||ê|| < R — the residual threshold R deter-
mined from equation (7) — a missed detection has occurred, 
case II, see Figures 1 and 4. The corresponding probability is 
defined as

In general a condition between || || and ||δx|| will exist. We 
must quantify the degree of this correlation in order to demon-
strate the integrity monitoring capability of RAIM-based fault 
detection. The result is given later in equation (13).

According to equation (2) the residual  and the position 
error δx will scale proportionally, with the factor (AT A)-1AT. 
Hence, the normal condition (NC) confidence ellipse will slide 
up the failure mode axis with slope α.

In (2) the position error 

is defined in a 3-D Cartesian coordinate system (X,Y,Z). 
However, for practical use a local topocentric coordinate 
system δxENU = (e, n, u) is more appropriate. A position 
vector at (φ, λ, h) given in the (X,Y,Z) system can be trans-
formed into the east, north, up (e, n, u) system through 
multiplication by the orthogonal transformation matrix F:

In the following discussion we only consider the three coor-
dinates (X,Y,Z). So we delete the last column of A and get a new 
matrix A0 = A(:, 1:3). Similarly we delete the last element of δx 
and define δx0 = δx(1:3); hence:

Note that rows 1 and 2 of the 3 × m matrix M relate to east-
ing and northing. Finally we define M0 = M(1:2, 1:2).

Imagine now a failure of magnitude β in satellite i (β is 
placed as the ith component):

We compute the norm squared for this special choice of e:

FIGURE 1  Basic RAIM states

FIGURE 2  Probability of a false alarm
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The many zeros in e simplifies this to

From (3) we recall ê = Sb or

as STS = S. The diagonal entry (i,i) of S is called sii. Now

This is the equation for a straight line through the origin 
and with slope αi. The slope αi of the failure mode axis related 
to satellite i is computed as

The slope values are computed for all i = 1, …, m, and the 
corresponding lines are depicted in Figure 3. The PRNs in this 
figure are the ones included in easy2 (computation of a satel-
lite’s position from an ephemeris).

The likelihood that the RAIM algorithm may detect an 
observational error depends on the satellite geometry. A poor 
geometry does not necessarily indicate observational errors, 
but if errors are present they may be difficult to detect.

The slope αi provides a measure of the difficulty in accu-
rately detecting a fault in presence of noise: the larger the slope, 
the more difficult it is to detect the fault.

The failure mode axes in Figure 3 through the origin with 
slope αi are given exclusively from the geometry determined by 
the satellites and the receiver. The mode axis with maximum 
value of αi is called αmax and the HPL is defined as

where σ0 is the standard deviation of the pseudoranges
 
.

At <http://www.nstb.tc.faa.gov/Terms.html> readers may 
find the following definition of HPL: The Horizontal Protection 
Level is the radius of a circle in the horizontal plane with its 
center being at the true position which describes the region that 
is assured to contain the indicated horizontal position.

The resulting RAIM fault detection algorithm is a simple 
one: Check the residual statistic to see if it is larger than the 
threshold R. If so, a system failure is declared. Given this simple 
algorithm, four outcomes are possible, refer to Figures 1 and 
4. 

Under a normal condition (NC), the position error ||δx|| 
does not exceed the protection level a, and the residual is small-
er than the threshold R, as in case III. If the position error does 
not exceed the protection level a, but the residual is larger than 

the threshold R, a false alarm (FA) has occurred, which is case 
IV. When both protection level and residual threshold have 
been breached, a detection failure (DF) has occurred — case 
I. Finally, a missed detection (MD) happens when the position 
error ||δx|| is larger than the protection level a, but the residual 
is smaller than the threshold R; that is case II.

In the general case, of course, more than one failure mode 
exists, that is, e in (11) has more than one non-zero compo-
nent. However, this presentation does not deal with that case. 
In their book (see Additional Resources), R. G. Brown and P. Y. 
C. Hwang investigate RAIM in case of non-uniform weighted 
observations and multiple faults.

Because the horizontal protection level depends on satellite 
geometry, it must be computed for each epoch and each posi-
tion. If the HPL is below the protection level, RAIM is said to 
be available for that epoch.

Referring to Figure 4, we may introduce inequalities, which 
characterize each region in the figure. For notational reasons, 
in addition to the predefined protection level a, we introduce 
the obvious new variables x = ||ê|| (norm of residuals) and y = 
||δxEN|| (horizontal position error): 
	 case I	 upper part	 a < y < x
		  lower part	 a < x < y
	 case II		  y < a < x
	 case III	 upper part 	 y < x < a
		  lower part	 x < y < a
	 case IV		  x < a < y

A desired result will plot in the case III area, upper part, 
which is called normal operation. The foregoing description 
may be summarized into the following procedure for deter-
mining HPL:

easy suite ii

FIGURE 3  Characteristic slopes for seven visible satellites

FIGURE 4  RAIM status, repeated. We aim at having plots in the gray area.
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Input to RAIM: The variance  of a pseudorange observation, 
the coefficient matrix A of the linearized least-squares observa-
tion equations, and the maximum allowable probabilities for a 
false alarm P(FA) and a missed detection P(MD).

Output of the algorithm: Horizontal protection level (HPL), 
which is the radius of a circle, centered at the true position that 
is assured to contain the indicated horizontal position with the 
given probability of false alarm and missed detection.

Similarly for Vertical Protection Level (VPL). Again, an offi-
cial definition (at <http://www.nstb.tc.faa.gov/Terms.html>) is: 
The vertical protection level is half the length of a segment on 
the vertical axis with its center being at the true position, which 
describes the region that is assured to contain the indicated 
vertical position.

Additional Resources
The original Easy Suite can be found online at <http://kom.aau.dk/~borre/
easy/>. The complete set of Easy Suite II Matlab codes can be found in com-
pressed (“zipped”) files at <http://gps.aau.dk/~borre/easy2>. 
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