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The decades of successful exploi-
tation of satellite navigation sys-
tems GPS and GLONASS have 
confirmed their unique status as 

a basic resource for reliable worldwide, 
all-weather, all-season, round-the-clock 
positioning and timing. Nevertheless, 
the permanently widening sphere of 
their practical applications — as well 
as challenging requirements emerging 
from potential new users — give these 
systems a momentum for further evolu-
tion and progress. 

One of the key directions of their 
development is modernization of the air 
interface by means of adding new rang-
ing signals to those already being trans-
mitted. As is widely known, since 2005 
GPS satellites have been launched that 
broadcast the new civil signal L2C, in 

addition to the encrypt-
ed P(Y)-code on the L2 
frequency. More recently, the 
civil signals in the GPS band 
L5 have appeared on the air. In the near 
future — about 2014 — a new civil signal 
L1C will be available, too. 

All those new signals, as well as the 
corresponding ones on Europe’s Galileo 
system, are modulated by longer ranging 
codes compared to those on the legacy 
signals. These new, longer codes provide 
better correlation protection, that is, a 
lower level of the multiple access inter-
ference (MAI), which is a disturbance 
that impedes the reception of the desired 
satellite signal owing to the presence of 
signals from other satellites. 

Another principal feature of note: 
all the new signals, unlike the original 

ones, contain a “pure” ranging code 
that serves as a pilot signal, in addition 
to the traditional data-modulated com-
ponent. These data-less pilot signals are 
primarily intended to improve the sta-
bility of phase tracking, especially when 
a received signal is relatively weak.

Certainly, similar efforts are being 
invested into the development of the 
GLONASS signals, where we should 
stress the specific trend toward code 
division multiple access (CDMA) signal 
multiplexing that has a better chance 
to be chosen as a basic platform for the 
future air interface than the frequency 
division multiple access (FDMA) inher-
ent in the current GLONASS system. 
Simultaneously, Japan, China, India, and 
some other countries have been involved 
in projects aimed at creating their own 
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global or regional satellite navigation 
systems, based on a philosophy analo-
gous to that of GPS and GLONASS.

Against this background, the idea 
quite naturally occurs to unify ranging 
code structures and modulation modes 
of the various systems in order to facili-
tate design and manufacturing of multi-
system receivers. Further, such a unifi-
cation of signal designs opens the way 
to finally integrate all available systems 
into a global GNSS network. Such steps 
seem to be all the more topical in light of 
the expected expansion of GNSS to new 
frequencies, for example, C-band. 

In the course of thinking over the 
preferable formats of signals for a next-
generation GLONASS air interface, the 
authors have come to some insights that 
they hope may be interesting from this 
perspective.

Design	Criteria	for	Ranging	
Code	Ensembles
As all ranging codes arrive at a receiver 
with arbitrary mutual delays, a satellite 
navigation downlink presents a typical 
example of an asynchronous CDMA 
multiple user system. Such a system’s 
individual satellite ranging code is called 
a signature. 

As was already mentioned, one of 
the critical issues in designing systems 
of this kind is the MAI level. A quan-
titative measure of relative intensity of 
MAI induced by the l-th side interfer-
ing signature while processing the k-
th desired signature is the normalized 
two-dimensional (2D) cross-correlation 

. Here τ and F represent shifts 
of an interfering signal versus a useful 
one in time and frequency, respectively. 

Clearly, the lower the  
compared to one for all possible pairs k, 
l under all possible shifts τ, F, the better 
the signature ensemble is for the correla-
tion protection, i.e., immunity to MAI. 
When the total number of signatures K 
is big enough, average MAI power might 
seem an adequate indicator of interfer-
ence intensity. This parameter is found 
as the arithmetic mean of  
over all satellite pairs k, l and within the 
whole area of possible mutual delays τ 
and Doppler shifts F. 

From the invariance of the cross-
ambiguity volume, however, it has been 
demonstrated that, with the maximal 
Doppler shift Fm covering several inverse 
signal periods T, the average MAI power 
cannot be lower than 1/N, where N is 
signature length. (For a discussion of 
this issue, see the book by V. P. Ipatov 
[1992] cited in the Additional Resources 
section near the end of this article.) On 
the other hand, a randomly chosen sig-
nature ensemble of rather long length N 
has the average MAI power approaching 
this bound with high probability. 

Keeping in mind that in the satel-
lite navigation typical values of T and Fm 
are of the order of milliseconds and tens 
kHz respectively, one must conclude that 
average MAI power is governed only by 
code length N and in no way by the fine 
signature structure. Therefore, the quan-
tity under discussion cannot be proposed 
as a criterion in the choice of an optimal 
ranging code ensemble once an appropri-
ate code length has been established.

One could think of replacing the 
average MAI power by the peak power 
value, again over all signal pairs and the 
whole area of possible time-frequency 
shifts. This indicator, however, actually 
appears to be quite hazy for serving as a 
measure of signature ensemble quality, 
because peak spikes of cross correlation 

 in wide Doppler zones can be 
extremely rare and bear little informa-
tion about integral MAI behavior.

With all these considerations in 
mind, it seems reasonable to judge the 
signature ensemble adequacy using the 
traditional criterion of the peak of the 1D 
correlation , ignoring 
possible Doppler shifts — as an exam-
ple of such widely practiced approach 
see discussion in the article by G. Hein 
et alia cited in Additional Resources. 
Physically, such a cross-correlation cor-
responds to the most unfavorable or 
static MAI, which is not shifting in time 
relative to a useful signal and, as a result, 
does not possess the effect of averaging 
from one coherent integration session to 
the next. Thus, orientation towards this 
criterion reflects the tendency to mini-
mize the worst-case deteriorating effect 
of MAI. In line with this, the objective is 

to find code ensembles having as small 
a correlation peak  as 
possible.

Numerous sources indicate that the 
correlation peak is bordered from below 
according to the fundamental Welch 
bound

or, with a large number of signals (K > 
> 1),

Obviously, a signature set achieving 
this bound (even though asymptoti-
cally, with N > > 1) is fit to be declared 
the optimal or minimax one. In the cur-
rent context, it only needs to be limited 
to ensembles of binary signatures, i.e., 
ranging codes whose elements belong to 
the binary alphabet {±1}.

Minimax	Binary	Ensembles;	
Kerdock	Signature	Sets
The list of heretofore known binary 
minimax ensembles can hardly be 
called rich. The main representatives of 
them are collected in table 1 specifying 
set size K, signature length N, and cor-
relation peak  for the length range 
N < 20 000. Actually, more ensembles 
exist, but for the sake of brevity we have 
deliberately omitted these from the 
table, because they differ from the ones 
included in the table only in the indi-
vidual fine structure of the signature 
members, while having the same values 
K, N, and .

Kasami sequences from the first row 
of the table are among the most popu-
lar and frequently referenced ones. 
They exist for lengths of the form N = 
2n – 1 with n even and have set size K 
= , which is many times smaller 
compared to the length. 

The generator of any Kasami sequence 
is quite simple and consists of two linear 
feedback registers: the first of length n 
generates a long m-sequence of period 
N and the second of length n/2 forms a 
short m-sequence of period N1 = 2n/2 – 1. 
The latter sequence is linked to the first 
one by decimation with the index 2n/2 + 
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1. Then the “pure” long sequence is the 
first in the Kasami set, the rest being 
produced by symbol-wise modulo-2 
summation of the long sequence with 
cyclic replicas of the short. 

Bent-function sequence ensembles 
exist for lengths N = 2n – 1 with n being 
a multiple of four and have set sizes and 
correlation peaks the same as Kasami 
sets of equal length. The great contribu-
tion of these ensembles is a possibility to 
unite any one of them with the Kasami 
set of equal length (see the second row 
of the table), having practically doubled 
the set size with no increase of the cor-
relation peak. 

Minimax Kamaletdinov ensembles 
are of special interest thanks to having 
lengths different from those of Kasami/
bent sets. Their generation is much more 
sophisticated against Kasami ones, while 
the set size K has the same relation to 
the length N, i.e., in being substantially 
small. For a longer discussion of the 
preceding points, see the articles by B. 
Zh. Kamaletdinov (1988, 1996) and the 
textbook Spread Spectrum and CDMA, 
referenced in Additional Resources.

The last row of Table 1 describes the 
Kerdock ensembles, radically differing 
from all the previous ones. As a matter of 
fact, despite constituting one of the basic 

constructions in classic coding theory, 
nonlinear Kerdock codes have not been 
mentioned for a long time among the 
attractive CDMA ensembles. The reason 
for this omission is that, in order to serve 
as a signature ensemble, an error-cor-
recting code should be cyclically closed 
in the sense that all its good distance 
properties have to cover — along with 
any codeword — all its cyclic-shifted 
replicas, too. As for the Kerdock code, 
its cyclic-closed version was discovered 
only in 1989 and presented in the refer-
enced article by A. Nechaev.

Binary signature Kerdock ensembles 
exist for any length of the view

where n is odd. Their correlation peak

converges to the Welch bound with the 
length growing:

hence, Kerdock sets are minimax. But 
what puts them absolutely above compe-
tition is their record set size K =(N + 2) /2, 
which is remarkably greater than that of 
any other binary minimax signature set.

More than this, as demonstrated in 
the book by V. P. Ipatov (1992), this value 
of K attains the fundamental upper bor-
der of the set size for binary sequences 
whose correlation peak approaches 1/ 

. Take for example n = 11, which 
corresponds to the Kerdock ensemble 
of length N = 4094 with the correlation 
peak ρmax = –35.85 dB and set size K = 
2048. Best among other sets of a similar 
length is a united ensemble of Kasami 
and bent functions of length N = 4095 
with almost the same correlation peak 
ρmax = –35.98 dB but an ensemble size 
more than 16 times smaller: K = 127!

Another advantage of the Kerdock 
ensembles is almost the ultimate sim-
plicity of their construction. To generate 
a Kerdock sequence of length N = 2(2n 
– 1) one needs a shift register containing 
n quaternary (equivalently 2n binary) 
stages. The register is covered with the 
linear feedback set up by a special qua-
ternary characteristic polynomial

whose coefficients fi, i = 0, 1,...,n – 1 
belong to the ring Z4 = {0,1,2,3}. All 
the operations in the feedback loop are 
performed in the Z4 ring, that is, sim-
ply modulo 4. Thus, a quaternary linear 
recurrent sequence of period N is gener-

Ensemble type Length  N Set size K Correlation peak ρmax

Kasami
	

Kasami and bent-
sequence union

Kamaletdinov-1

Kamaletdinov-2

Kerdock

TABLE 1.  Binary minimax ensembles
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ated whose current element di is a linear 
combination of the n preceding ones:

These elements are manifested as 
a sequence of states of the last stage or 
— with corresponding time advance 
— of any other register stage. Trans-
formation of the formed sequence into 
a binary Kerdock sequence is done by 
simply reading only a senior binary digit 
of a chosen (e.g., last) register quaternary 
stage. Of course, to implement phase-
shift keying (PSK) this sequence should 
be as always transformed to the alphabet 
{1±}: 0 → 1, 1 → –1. 

Changing the register’s initial load-
ing results in 2n-1 different Kerdock 
sequences. Each of them can produce 
one more Kerdock sequence by way of 
alternating polarity of every odd-posi-
tion symbol, in other words, by symbol-
wise multiplication with the meander 
sequence ...,+1,–1,+1,–1,... . In this way 

Kerdock sequences are obtained alto-
gether. 

The key role in Kerdock set genera-
tion belongs to the feedback polyno-
mial. Finding these polynomials is not 
a trivial task and the general method of 
its solution has again been outlined in 
the article by A. Nechaev. 

The primitive binary degree-n poly-
nomial φ(x) is taken as primary material 
and converted into a necessary quater-
nary characteristic polynomial by the 
following series of manipulation. First 
of all, odd and even degrees of φ in φ(x) 
are separated:

φ(x) = F1(x
2) + xF2(x

2),

where F1(x) and F2(x) are binary poly-
nomials of degree (n–1)/2 or less. Then 
the quaternary polynomial G(x) is con-
structed over the ring Z4:

G(x) = x[F2(x)]2 – [F1(x)]2 mod 4,

transformed further to the quaternary 
polynomial

f(x) = H(x)/Hn mod 4

The last step is normalizing the latter, 
leading to the quaternary characteristic 
polynomial that we are seeking:

.
where Hn is senior coefficient of the poly-
nomial H(x).

For example, one of the binary n= 5 
primitive polynomials is

φ(x) = x5 + x2 + 1 = x2 + 1 + xx4,

meaning that F1(x) = x + 1, F2(x) = x2. 
Then

G(x) = xx4 – (x+1)2 =  
x5 + 3x2 + 2x + 3 mod 4, 

and

H(x) = G(3x) = 3x5 + 3x2 +2x + 3 mod 4,

finally giving quaternary characteristic 
degree-5 polynomial

f(x) = H(x)/3 = x5 + x2 + 2x + 1.

All such polynomials have been tab-
ulated by the authors up to the degree n 
= 17, which corresponds to the sequence 
length N = 262 142. table 2 presents the 
selection of quaternary characteristic 
polynomials, one for each sequence 
length, with the senior polynomial 
coefficients given first. The polynomi-
als listed are pre-
ferred to the rest 
due to the minimal 
number of non-zero 
coefficients, which 
simplifies the code-
generator imple-
mentation.

To illustrate the 
technica l  i ssues 
involved, Figure 
1 shows the case 

structure of a Kerdock set generator for 
sequence length N = 4094. Here the shift 
register consists of 11 quaternary stages 
or, equivalently, 22 binary triggers. Hav-
ing taken the characteristic polynomial 
of 11-th degree from the Table 1, f(x) = 
x11 + x2 +2x +1, we come to the quater-
nary linear recurrent sequence given by 
the equation

di = – di–9 – 2di–10 – di–11 =  
3di–9 + 2di–10 + 3di–11 mod 4,

according to which the feedback circuit 
includes three modulo 4 multipliers and 
two modulo 4 adders. The rightmost 
part of the scheme is an alphabet con-
vertor from {0,1} to {±1} and a conven-
tional multiplier complementing every 
Kerdock sequence at the output 1 with 
its Kerdock counterpart by means of 
multiplying by meander. 

One can compare the complexity of 
this structure to the one of a Kasami set 
generator. For the neighboring length 
N = 4095 the latter type of generator 
requires 18 binary stages. Taking into 
account commensurable complexity of 
binary and quaternary logics, gener-
ating Kerdock sequences is undoubt-
edly almost as simple as that of Kasami 
sequences.

FIGURE 1  Length N = 4094 Kerdock set generator
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Output 1
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±10, 1

...,1,-1,1,-1,...

Polynomial degree n Sequence length N Polynomial coefficients

5 62 100121

7 254 10020011

9 1022 1000010201

11 4094 100000000121

13 16	382 13100020000011

15 65	534 1000000200000011

17 262	142 100000020000001001

TABLE 2.  Quaternary characteristic polynomials
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Although earlier we noted the cri-
terion of good 1D cross-correlation as 
dominating, for practical comparisons 
knowing the details of MAI behavior 
under essential frequency shifts is also 
quite important. Such information for 
binary minimax signature ensembles 
is presented in table 3, where for every 
specific ensemble correlation peak ρmax, 
root mean square correlation ρrms and 
one-percent quantile ρ0.01 are given ver-
sus length N and set size K. (The latter 
two entities are, respectively, just the 
square root of average MAI power and 
the threshold exceeded by MAI level 
with a probability of 0.01.) 

To be specific, the real time period 
of all signatures was set equal to one 
millisecond. The numeric analysis has 
demonstrated that MAI statistics are 
insensitive to further widening of the 
Doppler zone as long as Fm spans several 
kilohertz; so, for comprehensive esti-
mates of MAI effects one only needs to 

study them within 
the zone of Doppler 
shifts ±5 kilohertz 
as is indicated in the 
table. 

The table figures 
also show that the 
only palpable differ-
ence in MAI behav-
ior between Kasami 
and Kerdock sets of 
comparable lengths 
manifests itself in the 
correlation peak ρmax 
within the wide Dop-
pler zone; all the rest 
of parameters remain 
indistinguishable. As 
was stressed earlier, 

however, ρmax in the wide Doppler zone is 
not at all an adequate parameter to evalu-
ate MAI destructive effects.

In summary, the analysis of this sec-
tion clearly shows the attractiveness of 
Kerdock signature ensembles. Because 
they are as good as any other binary 
minimax ensemble in the matter of 
correlation protection, the Kerdock sets 
convincingly excel all of them in the set 
size, allowing them to accommodate as 
many satellite signals as is needed. This 
quality, in combination with the sim-
plest technology of sequence generation, 
makes the Kerdock ensembles an ideal 
platform for the next-generation GNSS 
air interface.

Use	of	Spectral	Resources	
and	Reasonable	Modulation
Since the advent of space-based navi-
gation in the 1960s and 1970s, the 
spectrum deficit has been sharpening 
dramatically. One can foresee future 

limitations on spectrum compactness of 
GNSS signals becoming much tougher 
than currently. 

Meanwhile, the answer to the ques-
tion: “How should we treat the concept 
of assigned bandwidth when applied to 
space-based radio navigation?” remains 
somewhat unclear. Indeed, consider 
for example the L2 band allocated to 
GLONASS: 1237.8–1256.8 MHz. But 
what are the specific constraints on the 
GLONASS spectrum intensity beyond 
this frequency range? Or, asked another 
way, what share of the total GLONASS 
signal power emitted beyond this band-
width can be tolerated? 

As an opposite case, the L1 GLONASS 
band (1592.9-1610 MHz) is subject to 
the strongest ITU regulations: power 
flux density should be kept below –194 
dB-W/m2 within the frequency slot of 
20 kHz per one GLONASS satellite over 
the whole adjacent radio astronomy fre-
quency window 1610.6-1613.8 MHz. The 
trouble here is that the power amplifier 
of a standard satellite transmitter does 
not tolerate amplitude modulation; so, 
signal prefiltering is not possible. Conse-
quently, when necessary, one is forced to 
implement radio-astronomy band rejec-
tion after power amplification, compro-
mising the efficiency of the transmitting 
energy. 

In principle, a proper type of BOC(n, 
m) modulation might be an option, 
allowing the GLONASS spectrum to dip 
within the radio-astronomy band. But in 
such a case a substantial fraction of the 
total signal power would fall outside the 
assigned GLONASS bandwidth. 

A radical way to get around such an 
obstacle — or, at least, to crucially allevi-
ate its effect — is to replace traditional 

BPSK with a proper 
continuous phase mod-
ulation such as minimal 
shift keying (MSK) or 
some of its many analogs. 
Such a modulation mode 
provides a very compact 
spectrum without signal 
amplitude modulation 
and potentially renders 
unnecessary any post-
amplifier filtering. 

Ensemble Length N Size K ρmax, dB 0 kHz ρrms, dB0 kHz ρmax, dB ±5 kHz ρrms, dB ±5 kHz ρ0.01, dB ±5 kHz

Kasami 4095 64 –35.99 –37.86 –26.75 –37.80 –30.50

Kasami 16	383 128 –42.08 –43.85 –32.77 –43.82 –37.10

Kasami+bent 4095 127 –35.99 –37.83 –23.23 –37.80 –30.50

Kamaletdinov-2 6972 82 –38.38 –40.11 –25.42 –40.11 –32.92

Kamaletdinov-1 10	506 104 –39.92 –41.89 –26.74 –41.89 –34.24

Kerdock 4094 2048 –35.82 –37.78 –24.26 –37.78 –30.90

Kerdock 16	382 8192 –42.01 –43.81 –29.96 –43.81 –36.90

TABLE 3.  Parameters of binary minimax ensembles

FIGURE 2 Power flux density within 20-kHz slot for BPSK (blue) and MSK 
(red)
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Our study has confirmed that, with 
an adequate fitting of MSK, it would be 
possible to reduce the penetration of L1 
GLONASS signal emissions into the 
radio astronomy band to the aforemen-
tioned level. Note, that similar ideas have 
already been put forward, for example, 
in the articles by J.-A. Avila-Rodriguez 
et alia, A. Schmitz-Peiffer et alia, and J. 
E. B. Ponsonby J.E.B, where the Gauss-
ian MSK was recognized as especially 
productive for implementation in the 
future satellite navigation air interface 
of C-band.

To validate this recommendation, 
Figure 2 shows the power f lux density 
β(F) within the test frequency slot of 
width F:

for a hypothetical GLONASS signal 
with the carrier frequency 1600 MHz 
near the center of the assigned band-
width. In the figure, G(f) represents the 
signal power spectrum density near 
the Earth’s surface, and T and N are 
the ranging code real-time period and 
length, respectively. 

The two sets of curves correspond to 
BPSK (blue) and conventional MSK (red), 
assuming a total power near the Earth 
surface of –158 dB-W when received on 
a three-decibel antenna, with T = 2 mil-
liseconds, F = 20 kHz and N = 10230. 
As can be seen, even the simplest con-
tinuous-phase modulation — contrary 
to BPSK — would enable GLONASS to 
observe the restrictions on its emissions 
penetrating inside the radio-astronomy 
window. This will be all the more true 
with optimization of the continuous-
phase modulation format.

Conclusions
In brief, the inferences from the our dis-
cussion in this article are as follows:
• With the code length preset there is 

no point in attempts to optimize sig-
nature ensemble based on criteria of 
average or peak MAI power over the 
wide Doppler zone. Instead, it seems 
adequate to search for a signature set 
with the lowest MAI peak under zero 
Doppler shift.

• Optimal signature sets with respect 

to the most unfavorable – static MAI 
— are minimax, that is, those attain-
ing the Welch bound.

• Kerdock signature sets, distinctively 
advantageous against other binary 
minimax ensembles in the set size 
and generation complexity, make a 
good option as ranging code ensem-
bles for future GNSS air interface

• The MSK-type modulation mode is 
a proper choice to comply with the 
current rigorous limitations on navi-
gation satellite out-of-band emissions 
as well as those that can be anticipat-
ed in the future.
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