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The last two decades have seen the 
evolution of increasingly sophis-
ticated GNSS signal process-
ing technology. These advances 

include such things as improved methods 
for acquiring and tracking a wide vari-
ety of new signal structures, advanced 
multipath mitigation techniques, the 
development of high-sensitivity receiv-
ers for reliable operation indoors and in 
urban canyons, high-speed processing 
to reduce time to first fix, and algorithms 
for improved ranging accuracy and atti-
tude estimation.

Common to many of the new sig-
nal processing methods is the need to 
process the millions of chips in a GNSS 
signal in unconventional ways, which 
can dramatically increase the amount of 
computation the receiver must perform. 
For example, in typical GNSS receivers 

the computation of correlation functions 
is not difficult because the correlator ref-
erence waveform can be an ideal chip-
ping sequence with only the values ±1, 
and multiplications become trivial. 

However, techniques such as the high 
performance of the Multipath Mitiga-
tion Technology (MMT) algorithm, 
developed by the author and a colleague, 
requires correlator reference waveforms 
that include the effects of filtering in 
the receiver and the satellite. Thus, in 
MMT many millions of multibit multi-
plications would be needed to compute 
the correlation function for just one 
delay value, notwithstanding that many 
high-resolution delay values are actually 
needed.

The computational demands in this 
example and in many other advanced 
processing techniques can be dramati-

cally reduced by first implementing a 
process called signal compression. In the 
signal compression technique discussed 
in the article, for which a patent is pend-
ing, a large number of raw digitized 
baseband signal samples (typically on 
the order of 107-108) is reduced to a small 
vector having only a few tens of samples 
(the exact number depends on the type 
of GNSS signal being processed). The 
compressed signal then has the appear-
ance of a single chip of the received sig-
nal (or two separate chips in some of the 
newer chip-multiplexed signals consid-
ered for GPS L1C and Galileo). 

This compression technique requires 
only simple additions to generate, and 
preserves all signal range and phase 
information. Subsequent processing 
of any type is dramatically simplified 
because of the extremely small size of 

The emergence of increasingly sophisticated GNSS signal processing techniques 
over the past 20 years is dramatically increasing the computational load on GNSS 
receivers. These techniques include new methods for acquiring and tracking 
a wide variety of second-generation signal structures, advanced multipath 
mitigation techniques, and the development of high-sensitivity receivers 
for reliable operation indoors and in urban canyons. This article by a long-
time GNSS signal expert describes a process of signal compression that can 
substantially reduce the amount of computation a receiver must perform.
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the compressed signal. Therefore, sub-
stantial advantages can accrue in a wide 
variety of endeavors, such as range and 
phase extraction, phase ambiguity reso-
lution, multipath mitigation, and integ-
rity monitoring among others.

Compression Mathematics
Before describing the design and opera-
tion of our technique for GNSS signal 
compression, we should first look at 
some of the key aspects of signal pro-
cessing and review the mathematical 
concepts for implementing a compres-
sion scheme.

Received Signal Model. An interesting 
characteristic of compression is that it 
imposes essentially no restrictions on 
the form of the received signal r(t) that 
is to be compressed and can accommo-
date a wide variety of signal structures. 
However, for conceptual simplicity in 
this discussion we will assume that r(t) is 
complex-valued and is at baseband with 
Doppler and navigation data modula-
tion removed.

For example, the received signal 
might have the simple form

where a is the signal amplitude, ϕ is the 
phase, f(t) is modulation (usually a PN 
code), τ is the signal delay, and n(t) is 
complex-valued Gaussian noise.

If multipath is present, the signal 
might have the more complicated struc-
ture

The signal might also be subject to 
distortion in passing through a disper-

sive medium, such 
as the ionosphere. 
The point being 
made here is that 
signal compression 
does not require any 
particular received 
signal structure.

Signal Cross-Cor-
relation. A funda-
mental operation 
in GNSS receivers is 
cross-correlation of 

the received signal r(t) with a receiver-
generated waveform m(t). The cross-cor-
relation has the form

where [0, T] is the time interval of sig-
nal observation and the asterisk denotes 
complex conjugate.

Definition of Signal Compression. For 
conceptual simplicity in defining signal 
compression, the cross-correlation in 
equation (3) is assumed to be a circular 
correlation of period T. However, with 
appropriate modifications and approxi-
mations, we can extend the theory to 
include non-circular cross-correlation.

In defining the basic form of signal 
compression, the reference waveform 
m(t) in (3) is required to have the form

where c(t) is an arbitrary chip waveform 
(which may be complex-valued and may 
include the effects of filtering) and the 
εk are real-valued weights (although 
an extension to complex values is pos-
sible). 

Here we can see that m(t) is the sum 
of N weighted time-shifted (rotated) 
versions of c(t), where the time shifts are 
integral multiples of the constant Tc. All 
GNSS pseudo-noise (PN) codes ) are of 
this form, except for chip-multiplexed 
codes which we will deal with later. It is 
important to understand that the repli-
cas of c(t) are allowed to overlap.

The compressed signal  is defined 
by

In this expression εkr(t + kTc) is r(t) 
weighted by εk and left-shifted (rotated) 
by kTc.

Visualizing Compression. Figure 1 is 
a helpful visualization of the compres-
sion process that was conceived by my 
colleague, Dr. Ben Fisher. For simplicity 
we assume that the signal’s PN code has 
simple real-valued chips, such those in 
the GPS C/A or P codes. The received 
baseband signal passes through delay 
line A, which is several chips in length 
(for clarity, the noise is omitted). 

The signal enters the delay line from 
the right and moves to the left (this per-
mits the waveform within the delay line 
to be seen as if it were displayed on an 
oscilloscope, with later parts of the wave-
form on the right). The receiver’s reference 
PN code, which is tracking the received 
code, simultaneously passes through an 
identical delay line B, the center of which 
is called the trigger point.

As the leading edge of each chip of 
the receiver’s reference code reaches the 
trigger point of delay line B, a snapshot 
is taken of the entire waveform in delay 
line A. If the triggering chip has negative 
polarity, the polarity of the entire snap-
shot waveform is inverted. The polarity-
homogenized snapshots (one for each 
arriving chip of the received signal) are 
pointwise accumulated to build up the 
compressed signal shown at the bottom 
of Figure 1.

Compression as a Correlation. We can 
equivalently define the compressed sig-
nal as the circular cross-correlation of 
the received signal r(t) with the impul-
sive sequence

as shown pictorially in Figure 2. Then,
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FIGURE 1  Visualization of signal compression
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which shows that this alternate definition is equivalent to that 
given by (5).

Properties of the Compressed Signal
The compressed signal  has a number of very useful proper-
ties. Among the most important are the following.

1. Small Size. In GNSS applications the compressed signal 
has the very nice property that essentially all of its energy 
(excluding noise) is concentrated into a pulse with a width on 
the order of Tc. To make this evident, assume that the received 
signal has the simple form

where a is the signal amplitude, τ is the signal delay, n(t) is zero-
mean wide-sense stationary noise, the weights εj have values of 
±1, and all time shifts are circular rotations over the period T. 
Substitution of this expression into (5) and manipulating the 
resulting double summation yields

where the double summation is the compressed noise-free signal 
and

is the compressed noise function. 
The terms in the double summation of (9) can be grouped 

into N groups such that each group contains N terms having the 
same value of k – j modulo N. Thus,  will be the summation 
of N group sums. The group sum corresponding to a particular 
value p of k – j modulo N is c[t – τ + pTc] weighted by the sum of 
terms εjεk, which satisfy k – j = p modulo N. Ignoring the noise, 
we can see that  consists of a concatenation of N weighted 
and translated (rotated) copies of c(t).

If the number of chips N is sufficiently large (on the order 
of 103 or more), the autocorrelation function of the chipping 
sequence has the property that the group sums in which k – j 
≠ 0 modulo N are negligible compared to the group sum in 
which k – j = 0 modulo N. Furthermore, the sum of all of these 
small group sums is also negligible because the translations of 
the weighted copies of c(t) prevent the small group sums from 
accumulating to large values. Thus, to a very good approxima-
tion, the double summation in (9) is just the sum of the terms 
where k – j = 0 modulo N:

This is a very significant result, because it tells us that the 
compressed received signal is essentially just the single weight-
ed chip waveform aNc(t – τ), with small “sidelobe” chips to 

either side. Thus, the significant part of the compressed signal 
is contained in a short window just long enough to contain this 
single chip and its delay uncertainty, and the sidelobe chips as 
well as all noise outside this window can be rejected. 

The required length of the window is Tc + δ, where δ is large 
enough to accommodate the measurement uncertainty of τ, 
the trailing transient due to filtering, and any multipath com-
ponents with delays larger than τ (almost always within 1 chip 
of the direct path delay). Thus the window length is somewhat 
larger than a one-chip duration of the code, a quantity much 
smaller than the length T of the observed signal r(t), which 
must include all N chips of the code. Because of this result,  
can justifiably be called a compressed signal.

2. Compressed Noise Statistics. Assuming the signal model 
given by (8), the mean of the compressed noise function (10) 
is

and its circular covariance function is

Some explanation is needed to understand the derivation 
(13). In the third line we have used the fact that the autocovari-
ance function Rnn of the received noise n(t) depends only on 
the difference of its two arguments, since n(t) is a wide-sense 
stationary process. To obtain the fourth line, we have grouped 
the terms in the third line double summation into N groups 
such that each group contains N terms having the same value 
of j – k modulo N (the groups are not displayed). 
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Consider the sum of the terms in the group for which j – k 
= p modulo N, where p is one of the integers 0, 1, … , N−1. The 
sum of the terms for this group is

If p = 0, the second summation in (14) is simply N. On the 
other hand, if N is sufficiently large and the weights εk are those 
associated with a typical pseudorandom sequence of chips, the 
second summation in (14) for p ≠ 0 will be negligible compared 
to N. Thus the result (13) is simply (14) with p = 0, namely 
NRnn(t – u).

Expression (13) gives us the following very useful result: 
When the weights εk have the values ±1, the covariance function 
of the compressed noise is simply the covariance function of the 
received noise scaled up by N.

3. Processing Gain. As can be seen from (11), compression 
scales the noise-free signal power by N2, and (13) shows that the 
noise variance gets scaled by N. Thus, the processing gain G is

which is essentially the same as the processing gain obtained 
by correlation.

4. Signal Visibility. If the number of chips N is sufficiently 
large, the processing gain of compression is great enough to 
make the compressed signal visible with very little noise. As a 
result, small subtleties in the chip waveshape due to filtering, 
multipath, ionospheric distortion, or other causes can easily 
be detected. This property is very beneficial for signal integrity 
monitoring and has been put to practical use in some models 
of GPS receivers.

Figure 3 illustrates how compression can make the received 
chip waveform visible, even when the signal is below the noise 
level. The top of the figure is a small portion of a one-second 
observation of a received baseband GPS L1 C/A-coded signal 
at 45 dB-Hz, with a video bandwidth of 12 MHz. The signal 

is mostly noise and the individual C/A-code chips are not vis-
ible.

The bottom portion of the figure shows the result of com-
pressing this signal received during a T = 1 second interval. The 
chip waveform is clearly visible, including the effects of filter-
ing in the satellite and receiver. We should point out that the 
compression process permits the trailing transient of the chip 
to be clearly seen, even though the trailing transients of chips 
in the raw signal extend into following chips. In comparison 
to a compressed C/A-code at L1, the structure of a compressed 
BOC(1,1) signal at E1 (noise omitted) is shown at the top of 
Figure 9.

5. Time-Invariant Linearity. Compression is a time-invari-
ant transformation, which means that the compression of the 
time-shifted signal r(t-τ) is simply (t-τ). This follows directly 
from definition (5).

The compressed signal also enjoys a linearity property: If

then

Proof:

The time-invariant linearity property is essential for vari-
ous advanced signal-processing operations, such as extracting 
multipath parameters from the signal.

6. Information Preservation and the Exact Reproduction of 
Cross-Correlation. The Compression Theorem, to be presented 
in the following section, shows that the compressed signal can 
be used to compute the cross-correlation (3) with a very small 
amount of arithmetic. Because cross-correlation is known to 
be a sufficient statistic for important parameters such as sig-
nal amplitude, delay, and phase, it follows that the compressed 
signal retains all of this information.

The Compression Theorem
Most importantly, the compressed signal can be used to dras-
tically reduce the amount of computation needed by a GNSS 
receiver to accurately obtain the correlation function Rrm(τ) in 
(3). The basis for this assertion is the Basic Compression Theo-
rem. 

The Basic Compression Theorem. The correlation function

can be computed by the alternate method

signal compression
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FIGURE 3  C/A-code signal visibility via processing gain
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Proof:

This theorem shows that Rrm(τ) can 
be calculated by cross-correlating the 
compressed signal (t) with the very 
short function c(t). Furthermore, since 
we have already noted that the signifi-

cant portion of (t) also spans a short 
time interval, the region surrounding 
the correlation peak of Rrm(τ) can be 
obtained with orders of magnitude less 
computation than would otherwise be 
required.

Generalizing the Compression Theorem. 
The Compression Theorem requires that 
the receiver-generated correlator refer-
ence waveform m(t) be the concatena-
tion of weighted and time-shifted chips, 
each chip having the same waveform c(t), 
as stated by (4). However, some of the 
newer codes being considered for GPS 
and Galileo are the sum of two chipping 
sequences having distinct chip wave-
forms, such as the Galileo E5ab signal 
and several proposed GPS/Galileo L1 
code modulations. 

These codes have the form

where

Here m1(t) is a sequence of chips 
characterized by the waveform c1(t), 
and m2(t) is a sequence of chips char-
acterized by another waveform c2(t). 
With chip-multiplexed codes, such as 
CBOC(6,1,1/11), the weights ε1k and ε2k 
serve as “chip selectors” with values of 
+1, 0, and −1, and are never both non-
zero. This restriction does not exist for 
codes such as Galileo E5ab. 

By forming the two compressed sig-
nals

and applying the compression theorem 
twice, the correlation Rrm(τ) can be cal-
culated as

Did you  
miss one?
Order back issues of  	
Inside GNSS magazine at 	
info@www.insidegnss.com
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In this case Rrm(τ) is calculated effi-
ciently as the sum of two correlations 
using the two compressed signals 1(t), 

2(t) and the two single-chip waveforms 
c1(t), c2(t).

As an example of the application of 
the Generalized Compression Theorem, 
Figure 4 illustrates the compression of a 
hypothetical TMBOC(2,1,1/4) signal.

Alternate Forms of 
Compression
In some applications we might find it 
useful to modify the structure of the 
compressed waveform by changing the 
weights εk and/or the shape of the chip 
waveform c(t) in the reference waveform 
m(t). An example is shown in Figure 5, 
where we consider basic compression as 
a correlation of m(t) with the sequence of 
impulses whose weights are +1 for posi-
tive chips and −1 for negative chips. 

In this figure the compression is 
altered by deleting those impulses that 
correspond to chips with no polarity 
change relative to the preceding chip. 
The deletion of an impulse is equivalent 
to setting its weight to zero. The result-
ing compressed waveform now has the 

appearance of a negative chip followed 
by a positive chip, instead of a single 
positive chip. This type of compressed 
signal is ideal for use as a discriminator 
in a delay-locked loop (DLL) for code 
tracking.

Applications
Certain types of signal-processing 
techniques and applications lend them-
selves to treatment using the Compres-
sion Theorem. Indeed, some are not 
practical without a signal-compression 
approach.

Calculation of High-Resolution Cross-
Correlation Functions. In standard receiv-
ers the replica code m(t) in the cross-cor-
relation (3) is an ideal binary-valued (±1) 
waveform. Multiplications in the inte-
grand become trivial and can be done 
at very high speed.

However, optimal processing theory 
requires the replica code to include the 
effects of filtering experienced by the 
received signal. In this case the replica 
code must have a multi-bit representa-
tion. This leads to millions of multi-bit 
multiplications in computing the cross-
correlation function, which in some 
applications is computationally infea-
sible. These applications could include 
such things as ircraft landing, auto-
mated machine control, and any real-
time kinematic application, especially 
if theoretically optimum performance 
is needed.

Furthermore, some new advanced 
signal processing methods require that 

the cross-correlation be computed for 
hundreds of high-resolution delay val-
ues τ. For example, consider a sampled 
P-code received baseband signal r(t) 
with 12 MHz bandwidth sampled at 40 
MHz. This sampling rate, which falls 
within the range used in typical GNSS 
receivers, essentially preserves all infor-
mation in the received signal. However, 
the sample spacing of 7.5 meters is much 
too coarse for the calculation of a cross-
correlation that might require a delay 
resolution of 10 centimeters or less.

A standard approach to solving this 
problem would be to interpolate between 
the samples of the received signal r(t) 
prior to calculating the cross-correlation. 
However, this would require millions of 
multi-bit computations, exacerbated by 
the need to calculate the cross-correla-
tion for many closely spaced values of 
delay τ.

Figure 6 shows how compression can 
drastically reduce the computational 
load in accurately computing such high-
resolution cross-correlation functions. 
At the top of the figure are samples of a 
compressed P-code signal with 12 MHz 
baseband bandwidth. The sampling rate 
is 40 MHz. Instead of many millions of 
samples, the compressed signal requires 
at most 10-15 samples in its representa-
tion.

By the Compression Theorem, the 
cross-correlation of the received signal 
r(t) and the replica code m(t) can be 
accomplished by cross correlation of 
the compressed signal (t) and the fil-
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tered chip c(t), a process requiring orders of magnitude fewer 
computations.

Furthermore, as indicated in the center of Figure 6, the 
interpolation required to obtain fine delay resolution can be 
automatically accomplished by using a fine resolution version 
of c(t), which can be precalculated and stored in memory. The 
sampling rate for c(t) is an integer multiple of the sampling 
rate for the compressed signal (t). The resulting cross-correla-
tion has the desired fine resolution, as shown at the bottom of 
Figure 6.

Observation of Waveform Anomalies. The ability of compres-
sion to lift a chip waveform out of the noise makes anomalous 
(“evil”) signals relatively easy to detect. Figure 7 shows two 
examples. In the first, the signal contains RF ringing, which 
might be due to the failure of a filter in the satellite or receiver. 
In the second, the signal has experienced dispersion, which 
might occur as it travels through the ionosphere (the amount 
of dispersion has been exaggerated for clarity).

Ease of Analysis and Simulation. In signal processing research 
and development, analysis and simulation can often be made 
much more efficient by using a compressed signal instead of the 
received signal itself. This can improve work productivity in 

such areas as — but not limited to — signal waveform design, 
signal cross-correlation properties, code tracking techniques, 
effects of signal distortion, and advanced multipath mitigation 
methods.

Observation/Extraction of Multipath Parameters. Figure 8 illus-
trates how the effects of multipath can be made clearly discern-
ible by observation of the compressed signal. In this example 
the received signal is C/A coded and, in addition to the direct 
path signal, two multipath components are present, one in-
phase with relative amplitude 0.6 and another 180 degrees out 
of phase with amplitude 0.3. The effects of multipath are clearly 
seen on the compressed signal, but are much harder to see in 
the cross-correlation function at the bottom of the figure.

Multipath Mitigation of Galileo Signals
In contrast to the simpler, legacy C/A-code, let’s look at how 
signal compression works to mitigate the effects of multipath 
involving more complex GNSS signals that will begin appear-
ing soon. For example, signal compression is essential for com-
putational feasibility in recent multipath mitigation work by the 
author using a method called Multipath Mitigation Technology 
(MMT) on Galileo signals. 

To illustrate the benefits of using compression, we will 
present comparative performance curves for MMT using the 
Galileo E5ab pilot signal. But first a description of the E5ab 
signal is needed.

Perhaps the most exciting of all GNSS signals, the Galileo 
E5ab signal is centered at 1191.795 MHz. The carrier is modu-
lated by two orthogonal codes running at 10.23 chips/second, 
each of which is frequency-shifted by modulating it with a 
complex-valued subcarrier phasor rotating at 15.345 MHz. A 
negative angular rotation shifts the first code spectrum down-
ward by 15.345 MHz to form the E5a signal. A positive angular 
rotation shifts the second code spectrum upward by 15.345 
MHz to form the E5b signal. 

Because the two codes are orthogonal, receivers can use just 
the E5a signal or just the E5b signal, or the combined signals, 
which we denote by E5ab. In particular, the RF front end of 
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GPS receivers designed for the L5 GPS 
signal can also receive the E5a signal 
because its center frequency is 1176.45 
MHz, the same as GPS L5. We confine 
our attention to the E5ab signal because 
its wide bandwidth will produce the 
smallest errors due to thermal noise and 
multipath.

Unlike any other existing or pro-
posed GNSS signal, the E5ab pilot sig-
nal has equal amounts of power in its 
real (I) and imaginary (Q) parts. As 
two orthogonal codes are used to gen-
erate the signal, two compressed signals 
must be formed in the receiver, one for 
E5a and one for E5b. Therefore, the gen-
eralization of the Compression Theorem 
applies.

The bottom two panels of Figure 
9 show the structure of a single E5a 
chip and a single E5b chip, including 
the complex subcarrier modulation. 
Blue and green dashed lines show the 
respective real and imaginary parts of 
the unfiltered E5a chip; the solid lines 
represent the corresponding waveforms 
as they would be affected by restricting 
the video bandwidth to 25.5 MHz with 
a 4-pole Butterworth lowpass filter, cor-
responding to a 51 MHz RF bandwidth. 
The E5b chip has exactly the same wave-

forms, except the polarity of the real part 
is opposite that of the E5a waveform.

The filtered complex E5a and E5b 
chips in Figure 9 are the two functions 
c1(t) and c2(t) that are respectively cross-
correlated with the compressed signals   

1(t) and 2(t) to compute the correlation 
function Rrm(τ) in (25). The compressed 
signals are generated as indicated in 
(24), where the weights ε1k and ε2k are 
the respective polarity sequences of the 
E5a and E5b codes and Tc is the common 
chip duration. Except for scaling, noise, 
delay, and distortions due to multipath, 
the significant portions of 1(t) and 2(t) 
will respectively resemble c1(t) and c2(t).

The power spectrum of the E5ab 
signal is shown in Figure 10. The signal 

has a bandwidth of 51 MHz, which is the 
largest bandwidth of any current GNSS 
signal.

MMT Performance Using the Galileo 
E5ab Signal. Figure 11 compares the code-
based multipath mitigation performance 
of MMT with the popular “double-
delta” technique used in many current 
GNSS receivers. The signal consists of a 
direct path component and a secondary 
path one-half the amplitude of the direct 
path, with the secondary path delay on 
the horizontal axis. 

The peak RMS ranging error using 
MMT is only 20 centimeters, while the 
peak error using a second-derivative cor-
relator (equivalent to a double-delta cor-
relator) is 92 centimeters. Furthermore, 
the significant errors for MMT span a 
much smaller multipath delay range. 
Overall, multipath errors using MMT 
are an order of magnitude smaller than 
with double-delta.

Using representative signal levels, 
Figure 12 compares simulated mul-
tipath-induced phase errors for the two 
methods under the same conditions. The 
performance improvement with MMT is 
similar to that using code. 

Implementation Issues
Although compression as defined by 
(5) and equivalently by (6) involves 
operations on a continuous waveform 
to produce a continuous compressed 
signal, practical compression is done 
digitally on a sampled waveform to 
produce samples of a compressed sig-
nal. It would be ideal if the received 
signal could be sampled with exactly 
N equally spaced samples per chip, 
where N is a positive integer. Then cor-
responding samples in each chip could 
be summed to produce a compressed 
signal also having N samples across the 
chip width.

However, Doppler on the signal and 
frequency error of the receiver clock cause 
the sampling points to be asynchronous 
relative to the received chips. To deal with 
this situation, each chip is divided into N 
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orders of magnitude fewer calculations. Any GNSS 
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equal-length segments, or bins. The bin 
into which each clocked sample point 
falls can be accurately calculated using 
both the code phase from the receiver’s 
delay-locked loop and the integrated 
Doppler output from the receiver’s phase-
locked loop. The sample value can then 
be summed into that bin. 

This process generally has the effect 
of “smearing” the compressed signal 
and slightly reducing its bandwidth. 
However, in applications requiring the 
reference chip c(t) to match the shape of 
the received chips, c(t) can be similarly 
pre-smeared prior to its storage in the 
receiver.

Summary
Signal compression is a linear time-
invariant transformation that preserves 
signal amplitude, delay, and phase infor-
mation, and makes the received signal 
structure visible.

It enables precise determination of 
high-resolution cross-correlation func-
tions with orders of magnitude fewer 
calculations.

Any GNSS signal can be com-
pressed.

Applications include advanced 
multipath mitigation, observation of 
received waveform anomalies, high-
efficiency signal processing simulations, 
and others.
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