
58 InsideGNSS J U L Y / A U G U S T 2 0 1 4 www.insidegnss.com

In recent years, numerous, relatively
inexpensive hardware platforms for
conducting scientific research using

the software defined radio (SDR) para-
digm have become commercially avail-
able. The Manufacturers section near
the end of this article lists examples of
several of these. In turn, this has spurred
universities and research groups around
the world to adopt this technology for
advanced GNSS signals-based research
and development.

Popular research topics exploit-
ing GNSS SDR receivers include “first
look” GNSS signal capture and analy-
sis, interference/spoofing detection and
mitigation, GNSS signal authentication
by means of nominally present satellite
signal distortions (i.e. signal “fingerprint-
ing”), signal quality and deformation
monitoring, GNSS bi-static radar and
synthetic aperture radar (SAR)-based
imaging, multi-platform combined GNSS
signal processing, advanced GNSS mul-
tipath mitigation, multi-element phased
array processing, ultra-tight integration
of GNSS with multiple sensors, vector
tracking loops and other “holistic” and
“open loop” signal tracking approaches,
ionospheric research using multi-fre-
quency GNSS observables, and general
multi-constellation/multi-frequency
GNSS receiver development, prototyping,
testing and algorithm validation.

The general approach to carrying out
such research involves one or more data
collection campaigns followed by mul-

tiple cycles of algorithm development,
sampled data processing, and analysis.
Realtime processing capability is gener-
ally not required at this stage of devel-
opment. However, to achieve maximum
productivity researchers find it highly
desirable to have flexibility in algorithm
development by way of high-level pro-
gramming languages and robust user-
friendly development environments
with extensive built-in math library sup-
port and data visualization capabilities.
Arguably, within the satellite navigation
community, MATLAB has become the
de facto standard in this regard.

Many of the a fore-mentioned
research topics can involve sampled sig-
nal data collection at wide bandwidths,
high dynamic range, and multiple coher-
ently sampled streams. For example,
consider a wideband GNSS data collec-
tion campaign for investigating phased
array based interference mitigation tech-
niques using a seven-element, controlled
reception pattern antenna (CRPA). In
this case, bandwidth, dynamic range,
and multiple channels are all in play.

Assuming typical front-end hard-
ware specifications for such an appli-
cation of 60 megasamples per second,
14-bit samples (extended to two bytes
for data transfer) and eight channels
(one channel being a separate reference
antenna), the data capture rate equals
960 Mbytes/second. Even with lesser
requirements, it is not uncommon to
return from a collection campaign with

Use of the software defined
radio paradigm for GNSS
receiver design and associated
research are proliferating
rapidly as computer processing
power increases and costs
decline. However, diverse
approaches to the software
employed for the high-level
development environments
of these designs limit the
cross-platform utility and full
exploitation of their computing
platforms. The article describes
the latest version of a
universal GNSS SDR processing
toolbox that is distributed
as a plug-in for high-level
algorithm development.

SANJEEV GUNAWARDENA

RECEIVER TOOLBOX

www.trimbledimensions.com trimble_dimensions@trimble.com

www.trimbledimensions.com trimble_dimensions@trimble.com

60 InsideGNSS J U L Y / A U G U S T 2 0 1 4 www.insidegnss.com

multiple hundreds of gigabytes (if not
terabytes) of data. Thus, a solution is
needed to process such large datasets in
a reasonable amount of time.

Today’s general-purpose desktop and
laptop computers provide tremendous
numerical computation capability at
low power and cost. This is made pos-
sible with multiple processor cores —
each clocking at multiple gigahertz and
supporting wide single-instruction-mul-
tiple-data (SIMD) instructions. In addi-
tion, today’s affordable consumer-grade
solid-state drives feature sustained read
speeds on the order of 500 megabytes/
second. Hence, these machines are good
candidates for crunching through large
amounts of SDR data. For further dis-
cussion about computational workloads,
see the sidebar, “Cost/Benefit Justifica-
tion for a GNSS SDR Toolbox.”

Unfortunately, the layers of software
abstraction built into high-level devel-
opment environments to facilitate user-
friendly coding is one of the main rea-
sons why, in general, these tools cannot
take full advantage of the computation
capabilities of the platforms they run
on. Thankfully, all such tools support
extensions to allow users to integrate

their own custom libraries written in
low-level code. In MATLAB, this exten-
sion framework is known as “MATLAB
executable” (MEX).

The goal of the work reported in
this article is to develop a truly uni-
versal GNSS SDR processing toolbox
for education and research that could
be distributed in the form of a plug-in
for high-level algorithm development
platforms — specifically MATLAB. The
following high-level features were envi-
sioned for the toolbox:
•	 supports the ability to perform awide

range of cutting-edge GNSS signals-
based research topics as described
previously

•	 supports most SDR data file formats
and front-end frequency plans

•	 supports all current and emerging
GNSS signal structures and other
signals of opportunity

•	 has a user interface and configuration
methodology that is easy to learn and
apply to the various research topics
described here

•	 provides as many open-source func-
tional examples as possible, thus
shortening the learning curve for both
beginners as well as advanced users.

The work described in this article
achieves, to a large extent, all of these
objectives and, more importantly, builds
the framework for the baseband signal-
processing layer of a truly universal
GNSS SDR architecture. The toolbox
has been used successfully to process
the following open GNSS signals using
live data: GPS L1 C/A, GPS L2C, GPS
L5, GLONASS FDMA signals on L1
and L2, Galileo E1 CBOC signals using
BOC(1,1), BOC(6,1) and CBOC(6,1,1/11)
processing; Galileo E5a and E5b, BeiDou
B1, satellite-based augmentation systems
(WAAS and EGNOS), and WAAS sig-
nals on L5.

The software is currently distributed
as a MATLAB toolbox and can be down-
loaded free of charge for education and
research use.

One important note: this toolbox
is not a complete GNSS receiver in the
sense that it does not output position,
navigation, and time (PNT) solutions.
However, the processed-signal outputs
(available at a one-kilohertz rate) contain
all the information needed for subse-
quent processing of PNT solutions.

Supporting Multiple GNSS
SDR File Formats
Most SDR data collection systems store
their IF-sampled or baseband-sampled
data in binary format. For uninterrupt-
ed collections over prolonged intervals,
data are sometimes written to multiple
small files because such a strategy allows
files to be managed more effectively than
one file written to a large-capacity vol-
ume. For systems that collect SDR data
continuously for the purpose of record-
ing rare anomalous signal events, this
multi-file collection strategy allows
older files to be deleted to make space
for new ones, thus extending the avail-
ability of past history to the size of the
storage array in contrast to the capacity
of a memory-based buffer.

In some systems, the GNSS samples
may be interlaced with binary data
from other sensors such as IMUs, laser
scanners or cameras to achieve inher-
ent time synchronization between
these sensors. In this case, additional
metadata information is needed to
extract GNSS samples from the file and,

Cost/Benefit Justification for a GNSS SDR Toolbox
For GNSS SDR, the most numerically intensive computations involve correlation
of hundreds of millions of signed integer samples for each second of processing.
However, these samples are typically less than one byte. Through some straight-
forward pre-processing steps to reduce dynamic range, the result of correlation
over a one-millisecond interval can usually be made to fit within 16-bit signed
integers with negligible loss of performance.

Hence, these structurally regular fixed-point computations can be parallelized
by factors of 8 or 16 using 128-bit and 256-bit wide Streaming SIMD Extensions
(SSE) or Advanced Vector Extensions (AVX), respectively. (AVX has been sup-
ported in all x86 processors shipping since 2011.) Further parallelization over the
available number of logical processors (up to 8 in most consumer PCs) can yield
up to 128× theoretical performance improvement compared to un-optimized
code.

Such optimizations require the correlation algorithm to be partitioned so that
subsets of the computations can be performed independently in each processor.
This type of “fine-grained” architecting of an algorithm to exploit the feature set
of a particular generation of processors to the maximum extent possible is best
done by human programmers as opposed to optimizing compilers.

Because sample correlation is such a critical component of any GNSS SDR
and the algorithm essentially does not change significantly with sampling rate
or GNSS signal structure, the cost of low-level optimization can be justified by
considering the subsequent time savings that can be gained. This is especially true
if the correlation engine can be architected such that it supports a wide range of
applications and use cases.

RECEIVER TOOLBOX

www.insidegnss.com J U L Y / A U G U S T 2 0 1 4 InsideGNSS 61

optionally, decode the sensor data.
Currently no standard exists within

the PNT community that allows GNSS
SDRs to work seamlessly with files writ-
ten by any SDR data-collection system.
This means that the user is forced to set
data decoding parameters in an ad hoc
manner. When files from a different sys-
tem are sourced, these parameters and
the decoder must be changed manu-
ally — a process that is prone to human
error.

Part of the effort described in this
article aims to address this issue so that
files from any data collection system can
be seamlessly integrated into any GNSS
SDR processing platform. The proposed
solution is to pair a metadata file with
each binary data file. The metadata file
includes all the information needed to
integrate the SDR file into the processor
and decode its contents.

As the format for the metadata file,
eXtensible Markup Language (XML)
provides a desirable option. All oper-
ating systems and application develop-
ment suites support XML, which is a
low-overhead human-readable format,
thus providing a straightforward process
to integrate it into any data collection
system. Figure 1 shows an example of
an SDR metadata file written in XML. It
contains all of the necessary information
to decode the multi-stream samples cor-
rectly as well as other information per-
taining to the data collection campaign.

The SDR toolbox uses this meta-
data mechanism to open and decode
SDR data files from many data collec-
tion systems. When opening a specified
SDR file, the reader automatically parses
the XML file and imports the metadata
into the MATLAB workspace as a struc-
ture. For multiple files, the user specifies
the name of the first file along with the
maximum number of one-millisecond
blocks to be processed. This information
is used to automatically find and splice
the necessary files to fulfill the request.

Supporting a Wide Range
of Research Applications
In broad terms, GNSS baseband signal
processing can be divided into three
stages. The following sections sum-
marize the features required in each of

these stages to support a wide range of
research applications.

Pre-Correlation Processing. As is well
known, correlation losses become neg-
ligible for sample quantizations beyond
two bits. However, this does not hold
true in the presence of interference. In
this case, we can use additional dynamic
range to perform interference reduction
processing prior to correlation. Typical
pre-correlation processing includes sam-
ple covariance computation (for interfer-
ence detection and location) and digital
filtering and excision techniques applied
in the time and/or frequency domains.

The various types of pre-correlation
processing that a researcher may want to
apply to a GNSS processing application
could be supported by including 1) an
optimized sample statistics processor, 2)
a sample masking processor for blank-
ing interference-dominated samples
from being correlated, 3) a configu-
rable time-domain filter implementa-
tion (such as Direct-Form II), and 4) a
fast Fourier transform (FFT) engine for
implementing frequency-domain inter-
ference detection and excision tech-
niques.

These processing blocks could be
integrated into the sample streams using
a software plug-in interface. Since imple-
mentations already exist in MATLAB,

developing a fully featured pre-correla-
tion processor was considered a lower
priority compared to the correlation
engine. However, Version 3 of the tool-
box does include a sample statistics and
noise processor as described in below.

Correlation Processing. Three fun-
damental techniques exist for sample
correlation: time-domain correlation,
parallel frequency correlation, and par-
allel code correlation. The latter two
methods provide a large number of cor-
relation outputs corresponding to Dop-
pler frequency offsets or code phases,
respectively.

The limited resolution of parallel
correlation algorithms and the inability
to steer the local replicas that produce
them with adequate precision (par-
ticularly with respect to code phase)
preclude their use in precision signal
tracking applications. The parallel code
correlation algorithm is most efficient
when researchers need a large swath
of code correlation space observability
such as during signal acquisition. Other
uses include correlation space monitor-
ing (also known as delay-Doppler map
monitoring) for applications such as
spoofer detection.

In any case, a low update rate on the
order of one to several seconds is typi-
cally sufficient for monitoring applica-

FIGURE 1 Proposed GNSS SDR metadata XML schema

62 InsideGNSS J U L Y / A U G U S T 2 0 1 4 www.insidegnss.com

tions. As MATLAB already contains optimized FFT implemen-
tations to write parallel correlation algorithms, no attempt was
made in this version of the toolbox to accelerate FFT-based
parallel correlators.

Many of the GNSS SDR research applications described here
require several more time-domain correlators than the typical
two to five needed for traditional signal tracking. Supporting
a given processing algorithm for all current and future GNSS
signals can become cumbersome due to their various signal
structures.

The ability to instantiate any number of correlators per
channel (where each channel can be setup for any GNSS signal
structure), and have all these correlators and channels managed
with little-to-no user intervention is one of the most desired
features of a universal GNSS SDR. This is because it allows
the researcher to focus on higher-level algorithm development
without having to be concerned with correlator implementation
details. Bringing this idea to fruition was one of the major goals
and contributions of this effort. The following section describes
the architecture of these universal GNSS correlators.

Post-Correlation Processing. Following sample correlation,
the data rate is reduced to an easily handled value of one kilo-
hertz. Most of the specialized GNSS signal processing algo-
rithm development occurs in this post-correlation domain.
This is also where the strengths of high-level algorithm devel-
opment tools such as MATLAB shine in terms of a researcher
being able to modify scripts and visualize the effects quickly
and easily.

An SDR toolbox must feature an interface to and from this
domain that is both efficient and intuitive in terms of configur-
ing and controlling the various types of channels and correla-
tors as required by the researcher.

Functional Architecture
This article serves as an introduction to Version 3 of the GNSS
SDR toolbox. This version’s functional architecture is signifi-
cantly different to that of the previous version (v2) that was
described in the paper by S. Gunawardena (2013) listed in Addi-
tional Resources.

Figure 2 shows the high-level functional block diagram of
the GNSS SDR toolbox for MATLAB. Sampled data streams
are read from source SDR data files, followed by buffering and
decoding into one or more data streams. The streams are fed
into two main signal-processing blocks: a stream statistics and

noise processor, and a multi-channel ChipShape correlation
engine.

To maintain a regular channel architecture that is not spe-
cific to any GNSS signal structure, the toolbox uses memory
codes exclusively for all pseudorandom noise and masking
sequences. These codes are fetched from files and saved in a
cache that is accessible to both processing blocks. This code
cache is fully configurable by the user such that unused codes
can be swapped out for new ones at runtime.

The stream statistics and noise processor computes sample
means, variances, and histograms for every one-millisecond
block of samples. Sample statistics provide a valuable low-laten-
cy “situational awareness” indication of in-band interference.
Researchers can use the raw one-millisecond outputs of this
processor to prototype a range of interference detection/moni-
toring algorithms. The toolbox includes commands to disable
these computations if not used.

In GNSS receivers, a channel control state machine is typi-
cally used to handle the transition from acquisition to steady-
state tracking (and subsequent reacquisition to tracking fol-
lowing loss-of-lock events). A low-latency signal-to-noise ratio
(SNR) estimate is used as one of the inputs to this controller.
Hence, the SNR calculation requires an estimate of noise power,
in general for each sample stream.

Some receivers employ a spare channel to compute this noise
estimate by correlating with a PRN sequence that is known to
be absent in the data. The toolbox implements these noise cor-
relators within the stream processor block. To reduce computa-
tion load, noise correlators implement only the real component,
and the numerically controlled oscillator (NCO) phase register
sizes are also smaller than those used for tracking channels.

As with the statistics processes, each noise correlator can be
turned off to improve runtimes. Because these noise correla-
tors can be set to correlate with any of the configured memory
codes (including for example, a dedicated random-noise code
of any length), the likelihood of significant cross-correlation
with in-band signals can be minimized.

Version 2 provided instantiation of any number of correlator

FIGURE 2 GNSS SDR Toolbox Version 3 high-level functional block
diagram

RECEIVER TOOLBOX

The ability to instantiate any number
of correlators per channel (where each
channel can be setup for any GNSS signal
structure), and have all these correlators
and channels managed with little-to-
no user intervention is one of the most
desired features of a universal GNSS
SDR.

www.insidegnss.com J U L Y / A U G U S T 2 0 1 4 InsideGNSS 63

points per channel, where each could be
connected to one or more universal code
generators with independently variable
relative code phase delay. Even though
this architecture facilitates a wide range
of applications, this earlier version
repeated the underlying sample-level
multiply-accumulate operations when
points were placed with less than one-
chip separation from each other.

Version 3 eliminates these repeated
operations by natively performing Chip-
Shape correlation on an array of points.
Ranges of points from this ChipShape
output vector can be combined (at the
user level) to form any desired points
of the traditional triangular correla-
tion function. For binary offset carrier
(BOC) signals, the need for a subcarrier
replica in the correlation process is also
eliminated because the user can apply
any subcarrier function as part of the
ChipShape-to-triangular conversion
step described previously. Further, by
applying chip masking patterns that
are specific to the spreading code (com-
bined with long coherent integration),
transients of the underlying signal can
be observed at high fidelity.

This technique has applications in
advanced multipath mitigation, signal
quality monitoring and authentication.
The paper by S. Gunawardena et alia
(2012) listed in Additional Resources
provides an overview of ChipShape
processing, the concept of chip mask-
ing, and its applications in signal quality
monitoring.

Figure 3 shows the functional archi-
tecture of a Version 3 channel. As with
previous versions, the user can instanti-
ate any number of these channels in the
toolbox. The main user-configurable
channel parameters are shown in red.

The Stream Index parameter selects
the input data stream to be processed by
a channel. Carrier wipeoff is performed
on this selected stream using the replica
generated by the carrier NCO — con-
trolled by phase-rate commands updat-
ed each millisecond. The carrier-wiped
stream is then sent to independent banks
of correlators that perform ChipShape
correlation for a one-millisecond block of
samples. The result is a ChipShape vector
for each bank that is transferred to the

user space (i.e., MATLAB workspace).
Each ChipShape bank is configured

independently by means of three param-
eters: the number of correlation points
per chip NC, the whole number of chips
spanning to the early side NE (relative
to code NCO integer phase), and the
whole number of chips spanning to the
late side, NL. Hence, the size of the Chip-
Shape vector is given by NC·(NE + NL + 1),
and the spacing between points is given
by 1/NC.

As shown in Figure 3, ChipShape
processing essentially splits traditional
correlation into partial accumula-
tions, where the fractional state of the
code NCO determines the array index
applicable to the partial accumulation
being processed. Splitting the correla-
tion operation in this way maximizes
opportunities for these accumulations
to be combined in user space to form
numerous correlation and/or code dis-
criminator functions depending on the
application. Another welcome benefit is
that this method reduces the dynamic
range required to prevent overflow of
these accumulators by a factor of 1/NC
compared to a traditional correlator.

Not shown in Figure 3 are the three
levels of enable/disable logic featured
in the toolbox to improve runtimes:
1) enable/disable entire channels that
were instantiated (also disables chan-

nel NCOs), 2) enable/disable banks that
were instantiated within a channel, and
3) enable/disable individual points with-
in a given bank.

If a ChipShape correlator is imple-
mented as described thus far, the output
vector would simply be the differential
of a traditional triangular correlation
function. Although useful, it does not
provide full insight into chip transition
edges and their precise zero crossings.
The rising, falling, and stationary parts
of a GNSS signal’s underlying code
sequence can be recovered by correlat-
ing with a local replica that corresponds
only to these events (e.g., to recover the
rising-edge, keep all -1 to +1 chip transi-
tions in the code sequence and set others
to zero).

As shown in Figure 3, this function-
ality is implemented by multiplying the
carrier-wiped sample stream with an
optional masking sequence. (In actual-
ity the mask bit is used to disable accu-
mulation for that sample.) Each bank is
configured independently to point to
any code and/or mask sequence stored
in the Code Cache shown in Figure 2.

Applying the
ChipShape Correlator
The native ChipShape correlator
architecture of Version 3 significantly
expands possibilities for advanced GNSS

FIGURE 3 Functional architecture of a Version 3 ChipShape correlator channel

64 InsideGNSS J U L Y / A U G U S T 2 0 1 4 www.insidegnss.com

signals-based research beyond what was
possible with Version 2. Among these
are the following examples.

Built-In Acquisition and Rapid-Reac-
quisition. A dedicated channel can be
instantiated for acquisition and/or rapid
reacquisition. This channel’s ChipShape
vector would span a significantly larger
range of integer chip offsets with coarse
inter-point spacing (e.g. NC=2 for BPSK,
NC=4 for BOC(1,1), and so on). A given
PRN can be acquired by pointing to the
corresponding memory code and pro-
gressively searching for sets of code phase
offsets and Doppler frequencies over time.

For reacquisition, the channel’s car-
rier and code NCOs are set with best
estimates of Doppler frequency and
codephase, respectively. In this case,
ChipShape points corresponding to
unnecessary span may be disabled to
reduce runtimes. An estimate from the
noise processor can be used as the basis
for setting up the acquisition detection
threshold.

Spoofer Monitoring. A civilian GPS
spoofing scenario described in the paper
by T. E. Humphreys et alia (Additional
Resources) attempts to pull a receiver
tracking channel away from the genu-
ine signal’s correlation peak by coercing
it to lock on to a stronger peak produced
by the spoofer. Even if Doppler offset
and codephase are perfect matches to
the genuine signal, the superposition
of the two would cause significant dis-
tortion of the ChipShape function due
to the spoofer’s RF transmitter transfer
function (which itself is a function of its
characteristic analog RF components
including modulators, amplifiers, filters
and antenna).

A monitor/detector could be imple-
mented using the GNSS SDR toolbox
based on a high-resolution ChipShape
output computed by an additional bank
in each channel. To reduce runtimes
(which corresponds to reducing power
in a practical application), this bank can
be activated at periodic intervals or at
the onset of in-band noise power fluc-
tuations (as monitored by sample vari-
ance and/or noise correlators), which
is a “cheaper” first indicator of possible
in-band interference.

Chip Edge–Based Code Tracking for

Advanced Multipath Mitigation. As evident
from the ChipShape functions shown
in the examples section, zero-crossing
rising-edge and falling-edge transitions
are the highest-frequency components
attainable from any received GNSS sig-
nal through correlation processing. This
is true regardless of signal structure.
Hence, code tracking techniques that
are primarily based on these transitions
stand to produce the best pseudorange
accuracy and multipath mitigation per-
formance possible for any receiver of
that bandwidth. Researchers can use the
highly configurable ChipShape outputs
produced by this toolbox as an enabler
for researching novel edge-based code
tracking techniques for precision GNSS
applications.

GNSS Signal Authentication. Variations
present in signal transmission payloads
of satellites are known to cause subtle
signal deformations that are detectable
using appropriate processing techniques.
Not surprisingly, ChipShape functions
are the cornerstone of these techniques.
For authentication applications, the
deformation caused only by the satellite
payload (as a function of nadir angle)
must be isolated from nuisance compo-
nents that include multipath, receiver
antenna/front-end transfer function
(including any variations due to tem-
perature, vibration, and aging), and
ionospheric effects.

Signal-Processing Applications
This section provides two GNSS signal-
processing examples that illustrate the
configuration and capabilities of the
toolbox.

Tracking and Eye Diagram Extraction
for BPSK(1) Signals: GPS L1 C/A. For this
example, a Version 3 channel was con-
figured with five banks as follows:
•	 Bank 1: NC=120, NE=NL=1, Code:

“GPS C/A PRN,” Mask: “None”
•	 Bank 2: NC=120, NE=NL=1, Code:

“GPS C/A PRN,” Mask: “GPS C/A
PP PRN”

•	 Bank 3: NC=120, NE=NL=1, Code:
“GPS C/A PRN,” Mask: “GPS C/A
PN PRN”

•	 Bank 4: NC=120, NE=NL=1, Code:
“GPS C/A PRN,” Mask: “GPS C/A
NP PRN”

•	 Bank 5: NC=120, NE=NL=1, Code:
“GPS C/A PRN,” Mask: “GPS C/A
NN PRN”

where PRN is the C/A code PRN number
used and “PP,” “PN,” “NP,” and “NN”
correspond to masking codes in which
adjacent positive (P) and negative (N)
chip events are isolated from the origi-
nal C/A code. (The distribution includes
a utility that generates these and other
masking code files from a given PRN
code file.)

The GPS L1 C/A signal was pre-
acquired using the FFT-based “Quick
Acquisition” utility included in the
distribution. The latest distribution
includes a fully open-source, single
channel–tracking script that features a
built-in tracking state controller. This
state machine was configured to pull-in
from acquisition, perform bit synchro-
nization, and settle with the following
steady-state tracking loop parameters:
20 milliseconds pre-detection integra-
tion time, 18-hertz, third-order phase
locked loop (PLL) bandwidth, one-hertz
carrier-aided first-order delay locked
loop (DLL) bandwidth, and coherent
early-minus-late code phase discrimi-
nator with early-late correlator spacing
of 0.0167 chips.

The final state activates banks 2 thru
5. Then, using the navigation databit sign
derived from Bank 1 (i.e., sign[Prompt-
Q]) to keep rising, falling, positive, and
negative components of the underlying
signal together, the one-millisecond
ChipShape outputs are coherently com-
bined for approximately 100 seconds.
Accompanying figures show the result-
ing normalized ChipShape outputs.

Figure 4 shows the GPS C/A code eye
diagram from a GPS front-end module
with approximately four megahertz
bandwidth. The effect of narrow front-
end bandwidth compared to the results
depicted in the following two figures is
clearly evident.

Figure 5 and Figure 6 show eye dia-
grams for GPS Block IIF-6 (SVN67
PRN06) at 78-degree elevation processed
from data obtained with the TRIGR
GNSS data collection system developed
by the Ohio University Avionics Engi-
neering Center. The final-stage IF filters
for these two data streams included a

RECEIVER TOOLBOX

www.insidegnss.com J U L Y / A U G U S T 2 0 1 4 InsideGNSS 65

transversal surface acoustic wave (SAW)
filter with 24-megahertz/3-decibel band-
width and a lumped element elliptic
response filter comprised of a series of
coaxial bandpass filters with 3-decibel
bandwidth of 18 megahertz.

The bandwidth is sufficiently high
in both eye diagrams to observe the 10
cycles of ripple that occurs within a C/A
chip. As described in the article by S.
Gunawardena et alia (2012b), these oscil-
lations have been determined to be cross-
talk from the P(Y) code modulation.

Careful observation of time intervals
just prior to a chip transition in Figure
6 reveals a slight buildup of power.
This effect, not observable in Figure 5,
is primarily due to the finite impulse
response-type characteristic of trans-
versal SAW filters as will be reported in
detail in a forthcoming presentation by
S. Gunawardena et alia (2014) at the ION
GNSS+ in September.

Tracking and E1C /E1B Subcarrier
Extraction for CBOC(6,1,1/11) Signals:
Galileo E1. For this example, a Version 3
channel was configured with four banks
as follows:
•	 Bank 1: NC=120, NE=NL=1, Code:

“GAL E1C PRN,” Mask: “None”
•	 Bank 2: NC=120, NE=NL=1, Code:

“GAL E1B PRN,” Mask: “None”
•	 Bank 3: NC=120, NE=NL=1, Code:

“GAL E1C PRN,” Mask: “GAL E1C
FF PRN”

•	 Bank 4: NC=120, NE=NL=1, Code:
“GAL E1C PRN,” Mask: “GAL E1B
FF PRN”

where “FF” corresponds to masking
sequences where adjacent chips with the
same sign are isolated from the original
spreading code.

Banks 1 and 2 are used for pilot sig-
nal tracking and data symbol extraction,
respectively. The ChipShape outputs
from these banks are correlated with
the ideal CBOC subcarrier functions to
produce traditional early, prompt, and
late correlation points. Banks 2, 3, and
4 are initially deactivated. After steady-
state tracking is reached, the ChipShape
outputs from Banks 3 and 4 are coher-
ently integrated for approximately 100
seconds by performing symbol wipeoff
using the known overlay symbols and the

FIGURE 4 GPS L1 C/A signal eye diagram processed from a front-end with ~4-MHz pre-corre-
lation bandwidth

ChipShape, GPS PRN28, Bw=4MHz

Relative CodePhase [chips]

N
or

m
al

iz
ed

 M
ag

ni
tu

de

1.5

1

0.5

0

-0.5

-1

-1.5

PP Q
PN Q
NP Q
NN Q
PP I
PN I
NP I
NN I

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

FIGURE 5 GPS L1 C/A eye diagram processed from a front-end with 18-MHz pre-correlation
bandwidth

ChipShape, GPS BLK IIF-6 (PRN6) EI=78 deg. Bw=18MHz

Relative CodePhase [chips]

N
or

m
al

iz
ed

 M
ag

ni
tu

de

1.5

1

0.5

0

-0.5

-1

-1.5

PP Q
PN Q
NP Q
NN Q
PP I
PN I
NP I
NN I

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

FIGURE 6 GPS L1 C/A eye eiagram processed from a front-end with 24 MHz pre-correlation
bandwidth

ChipShape, GPS BLK IIF-6 (PRN6) EI=78 deg. Bw=24MHz

Relative CodePhase [chips]

N
or

m
al

iz
ed

 M
ag

ni
tu

de

1.5

1

0.5

0

-0.5

-1

-1.5

PP Q
PN Q
NP Q
NN Q
PP I
PN I
NP I
NN I

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

66 InsideGNSS J U L Y / A U G U S T 2 0 1 4 www.insidegnss.com

data symbols derived from the prompt
correlator of Bank 2, respectively.

Similar to the GPS C/A code tracking
example, the channel state machine was
configured to obtain the same steady-
state tracking parameters. However,
instead of the bit synchronization state
used for GPS C/A code, the Galileo E1
tracking demo uses the included overlay
code synchronizer.

Figure 7 shows the one-millisecond
prompt correlator outputs (pilot and
data) from the acquisition pull-in state
to just after activation of banks 2–4.

Figure 8 and Figure 9 show the Gali-
leo FM3 E1 CBOC(6,1,1/11) pilot and
data component subcarriers as observed
from front-end bandwidths of 18 and 24
megahertz, respectively. As to be expect-
ed, the multi-level subcarrier functions
experience more distortion with the
18-megahertz front-end compared to
24 megahertz. Also notice that for tra-
ditional early-minus-late discriminator-
based code tracking, zero crossings do
not occur at zero codephase due to band-
limiting.

Conclusion
This article introduced the GNSS SDR
Toolbox for MATLAB (Version 3). This
software performs GNSS SDR baseband
signal processing using an optimized
multi-threaded approach. The main
motivation behind the development of
this tool was to accelerate offline pro-
cessing times for large GNSS SDR datas-
ets. The toolbox improves runtimes by at
least a factor of 30 compared to equiva-
lent MATLAB-only scripts.

The main feature of Version 3 is a
multi-channel universal GNSS Chip-
Shape correlation engine that can be
used as the foundation for advanced
GNSS receiver development, algorithm
design, and prototyping. It can also be
used as an educational tool for demon-
strating advanced GNSS signal process-
ing techniques.

The Version 3 distribution contains
numerous open-source scripts that
demonstrate the setup and use of all
major features. The toolbox is avail-
able free of charge for educational and
non-commercial research use. The
software and additional resources are

FIGURE 7 From example of tracking and E1C/E1B subcarrier extraction for CBOC: one-millisec-
ond Galileo E1C (pilot) and E1B (data) prompt correlator outputs over time

Galileo FM3 1 ms Prompt Correlator Outputs

Time [seconds]

Co
rre

la
to

r M
ag

ni
tu

de

1.5

1

0.5

0

-0.5

-1

-1.5
0 1 2 3 4 5 6 7 8

x104

FIGURE 8 Galileo FM3 CBOC(6,1,1/11) E1C and E1B subcarrier functions processed from a front-
end with 18 MHz pre-correlation bandwidth

Galileo FM3 CBOC(6,1,1/11) SubCarrier. EI: 85 deg. BW: 18 MHz

Relative CodePhase [chips]

N
or

m
al

iz
ed

 M
ag

ni
tu

de

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

FIGURE 9 Galileo FM3 CBOC(6,1,1/11) E1C and E1B subcarrier functions processed from a front-
end with 24 MHz pre-correlation bandwidth

Galileo FM3 CBOC(6,1,1/11) SubCarrier. EI: 85 deg. BW: 24MHz

Relative CodePhase [chips]

N
or

m
al

iz
ed

 M
ag

ni
tu

de

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

RECEIVER TOOLBOX

www.insidegnss.com J U L Y / A U G U S T 2 0 1 4 InsideGNSS 67

available through the author’s blog:
<ChameleonChips.com>. Minimum
software requirements needed to run the
toolbox include Microsoft Windows (32
or 64-bit) and MATLAB version 2007B
or above.

Acknowledgment
This article was adapted in part from a
presentation given by the author at the
ION GNSS+ 2013 conference on Sep-
tember 19, 2013. The views expressed in
this article are solely those of the author
and not those of any other person, insti-
tution, organization, or entity.

Manufacturers
The MATLAB toolbox described in this
article was developed using Microsoft
Visual Studio from Microsoft Corpora-
tion, Redmond Washington USA. The
software was profiled using Intel Paral-
lel Studio from Intel Corporation, Santa
Clara California USA. The software runs
on, and plots for this article were gener-
ated using MATLAB from The Math-
works, Inc. Natick, Massachusetts,
USA. The operating system used was
Windows 7 64-bit from Microsoft Cor-
poration, Redmond Washington, USA.
Narrowband SDR data for the example
presented in the section titled “Signal-
Processing Applications” were collected
using a SiGe GN3S Sampler V3 from
Sparkfun Electronics, Boulder, Colo-
rado USA. Wideband GPS L1/Galileo E1
data were collected using a TRIGR GNSS
data collection system from the Ohio
University Avionics Engineering Cen-
ter, Athens, Ohio USA. The final-stage
IF filters for the two data streams incor-
porated a SAWTEK 854672 transversal
SAW filter from TriQuint Semiconduc-
tor Inc., Hillsboro, Oregon, USA, and a
lumped element elliptic response filter
comprised a series of six SBP-70+ coax-
ial bandpass filters from Mini-Circuits,
Brooklyn, New York, USA.

Examples of low-cost data collection
hardware platforms that support GNSS
bands include the SiGe GN3S Sampler
(see Sparkfun Electronics publication,
Additional Resources), the Univer-
sal Software Radio Peripheral (USRP)
(Ettus Research in Additional Resourc-
es), and products based on fully inte-

grated field programmable RFICs such
as the Loctronix ASR-2300 (Loctronix
Corporation, Additional Resources) and
bladeRF (Nuand, Additional Resources).

Additional Resources
[1] Ettus Research, Universal Software Radio
Peripheral (USRP), <https://www.ettus.com/
product/details/UN210-KIT> (accessed July
2014)

[2] Galileo Open Service Signal in Space Inter-
face Control Document (OS SIS ICD), issue 1.1,
<http://ec.europa.eu/enterprise/policies/sat-
nav/galileo/files/galileo-os-sis-icd-issue1-
revision1_en.pdf> (accessed August 2013)

[3] Gunawardena, S. (2007), “Development of
a Transform-Domain Instrumentation Global
Positioning System Receiver for Signal Quality
and Anomalous Event Monitoring.” Electronic
Dissertation, Ohio University, 2007 <https://
etd.ohiolink.edu> (accessed August 2013)

[4] Gunawardena, S. (2013), “A Universal GNSS
Software Receiver MATLAB Toolbox for Education
and Research,” Proceedings of the 26th Interna-
tional Technical Meeting of The Satellite Divi-
sion of the Institute of Navigation (ION GNSS+
2013), pp. 1560-1576, Nashville, Tennessee,
USA, September 2013

[5] Gunawardena, S. (2011), and F. van Graas,
“Multi-Channel Wideband GPS Anomalous Event
Monitor,” Proceedings of the 24th International
Technical Meeting of The Satellite Division of
the Institute of Navigation (ION GNSS 2011), pp.
1957–1968, Portland, Oregon, USA, September
2011

[6] Gunawardena, S. (2012a), F. van Graas, “High
Fidelity Chip Shape Analysis of GNSS Signals
using a Wideband Software Receiver,” Proceed-
ings of the 25th International Technical Meeting
of The Satellite Division of the Institute of Navi-
gation (ION GNSS 2012), pp. 874-883, Nashville,
Tennessee, USA, September 2012

[7] Gunawardena, S. (2012b), and F. van Graas,
“Analysis of GPS Pseudorange Natural Biases
using a Software Receiver,” Proceedings of the
25th International Technical Meeting of the
Satellite Division of the Institute of Navigation
(ION GNSS 2012), Nashville, Tennessee, USA,
September 2012

[8] Gunawardena, S. (2014), and F. van Graas,
“Analysis of GPS-SPS Inter-PRN Pseudorange
Biases due to Receiver Front-End Components,”
Proceedings of the 27th International Technical
Meeting of The Satellite Division of the Institute
of Navigation (ION GNSS+ 2014), Tampa, Florida,
USA, September 2014

[9] Humphreys, T. E., and B. M. Ledvina, M. L.
Psiaki, B. W. O’Hanlon, and P. M. Kintner, Jr.,

“Assessing the Spoofing Threat: Development
of a Portable GPS Civilian Spoofer,” Proceedings
of the 21st International Technical Meeting of
the Satellite Division of The Institute of Naviga-
tion (ION GNSS 2008), Savannah, Georgia, USA,
September 2008, pp. 2314-2325

[10] Loctronix Corporation, ASR-2300 MIMO
SDR, <http://www.loctronix.com/en/products_
asr_2300.html> (accessed July 2014)

[11] MathWorks Inc., MATLAB: the language of
technical computing<http://www.mathworks.
com/products/matlab> (accessed August 2013)

[12] Mathworks Inc., “Introducing MEX-
Files,”<http://www.mathworks.com/help/mat-
lab/matlab_external/introducing-mex-files.
html> (accessed July 2014)

[13] Nuand, bladeRF Software Defined Radio,
<http://nuand.com> (accessed June 2014)

[14] Ouvry, L., and C. Boulanger and J. R.
Lequepeys, “Quantization effects on a DS-CDMA
signal,” Spread Spectrum Techniques and Appli-
cations, 1998, Proceedings of the 1998 IEEE 5th
International Symposium, vol.1, pp. 234,238
vol.1, 2-4 September 2–4, 1998

[15] Sparkfun Electronics, SiGe GN3S Sam-
pler v3, <https://www.sparkfun.com/prod-
ucts/10981> (accessed August 2013)

Author
Sanjeev Gunawardena is a
GNSS research and
development engineer
with more than 15 years
of professional experi-
ence in the field. He
received his Ph.D. in

electrical engineering from Ohio University. His
research interests include RF design, digital sys-
tems design, high performance computing, soft-
ware radio, and all aspects of GNSS receivers and
associated signal processing.

