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In recent years, numerous, relatively 
inexpensive hardware platforms for 
conducting scientific research using 

the software defined radio (SDR) para-
digm have become commercially avail-
able. The Manufacturers section near 
the end of this article lists examples of 
several of these. In turn, this has spurred 
universities and research groups around 
the world to adopt this technology for 
advanced GNSS signals-based research 
and development.  

Popular research topics exploit-
ing GNSS SDR receivers include “first 
look” GNSS signal capture and analy-
sis, interference/spoofing detection and 
mitigation, GNSS signal authentication 
by means of nominally present satellite 
signal distortions (i.e. signal “fingerprint-
ing”), signal quality and deformation 
monitoring, GNSS bi-static radar and 
synthetic aperture radar (SAR)-based 
imaging, multi-platform combined GNSS 
signal processing, advanced GNSS mul-
tipath mitigation, multi-element phased 
array processing, ultra-tight integration 
of GNSS with multiple sensors, vector 
tracking loops and other “holistic” and 
“open loop” signal tracking approaches, 
ionospheric research using multi-fre-
quency GNSS observables, and general 
multi-constellation/multi-frequency 
GNSS receiver development, prototyping, 
testing and algorithm validation.

The general approach to carrying out 
such research involves one or more data 
collection campaigns followed by mul-

tiple cycles of algorithm development, 
sampled data processing, and analysis. 
Realtime processing capability is gener-
ally not required at this stage of devel-
opment. However, to achieve maximum 
productivity researchers find it highly 
desirable to have flexibility in algorithm 
development by way of high-level pro-
gramming languages and robust user-
friendly development environments 
with extensive built-in math library sup-
port and data visualization capabilities. 
Arguably, within the satellite navigation 
community, MATLAB has become the 
de facto standard in this regard.

Many of the a fore-mentioned 
research topics can involve sampled sig-
nal data collection at wide bandwidths, 
high dynamic range, and multiple coher-
ently sampled streams. For example, 
consider a wideband GNSS data collec-
tion campaign for investigating phased 
array based interference mitigation tech-
niques using a seven-element, controlled 
reception pattern antenna (CRPA). In 
this case, bandwidth, dynamic range, 
and multiple channels are all in play. 

Assuming typical front-end hard-
ware specifications for such an appli-
cation of 60 megasamples per second, 
14-bit samples (extended to two bytes 
for data transfer) and eight channels 
(one channel being a separate reference 
antenna), the data capture rate equals 
960 Mbytes/second. Even with lesser 
requirements, it is not uncommon to 
return from a collection campaign with 
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multiple hundreds of gigabytes (if not 
terabytes) of data. Thus, a solution is 
needed to process such large datasets in 
a reasonable amount of time.

Today’s general-purpose desktop and 
laptop computers provide tremendous 
numerical computation capability at 
low power and cost. This is made pos-
sible with multiple processor cores — 
each clocking at multiple gigahertz and 
supporting wide single-instruction-mul-
tiple-data (SIMD) instructions. In addi-
tion, today’s affordable consumer-grade 
solid-state drives feature sustained read 
speeds on the order of 500 megabytes/
second. Hence, these machines are good 
candidates for crunching through large 
amounts of SDR data. For further dis-
cussion about computational workloads, 
see the sidebar, “Cost/Benefit Justifica-
tion for a GNSS SDR Toolbox.”

Unfortunately, the layers of software 
abstraction built into high-level devel-
opment environments to facilitate user-
friendly coding is one of the main rea-
sons why, in general, these tools cannot 
take full advantage of the computation 
capabilities of the platforms they run 
on. Thankfully, all such tools support 
extensions to allow users to integrate 

their own custom libraries written in 
low-level code. In MATLAB, this exten-
sion framework is known as “MATLAB 
executable” (MEX).

The goal of the work reported in 
this article is to develop a truly uni-
versal GNSS SDR processing toolbox 
for education and research that could 
be distributed in the form of a plug-in 
for high-level algorithm development 
platforms — specifically MATLAB. The 
following high-level features were envi-
sioned for the toolbox:
•	 supports the ability to perform awide

range of cutting-edge GNSS signals-
based research topics as described 
previously

•	 supports most SDR data file formats
and front-end frequency plans

•	 supports all current and emerging
GNSS signal structures and other 
signals of opportunity

•	 has a user interface and configuration
methodology that is easy to learn and 
apply to the various research topics 
described here

•	 provides as many open-source func-
tional examples as possible, thus 
shortening the learning curve for both 
beginners as well as advanced users.

The work described in this article 
achieves, to a large extent, all of these 
objectives and, more importantly, builds 
the framework for the baseband signal-
processing layer of a truly universal 
GNSS SDR architecture. The toolbox 
has been used successfully to process 
the following open GNSS signals using 
live data: GPS L1 C/A, GPS L2C, GPS 
L5, GLONASS FDMA signals on L1 
and L2, Galileo E1 CBOC signals using 
BOC(1,1), BOC(6,1) and CBOC(6,1,1/11) 
processing; Galileo E5a and E5b, BeiDou 
B1, satellite-based augmentation systems 
(WAAS and EGNOS), and WAAS sig-
nals on L5.

The software is currently distributed 
as a MATLAB toolbox and can be down-
loaded free of charge for education and 
research use.

One important note: this toolbox 
is not a complete GNSS receiver in the 
sense that it does not output position, 
navigation, and time (PNT) solutions. 
However, the processed-signal outputs 
(available at a one-kilohertz rate) contain 
all the information needed for subse-
quent processing of PNT solutions.

Supporting Multiple GNSS 
SDR File Formats 
Most SDR data collection systems store 
their IF-sampled or baseband-sampled 
data in binary format. For uninterrupt-
ed collections over prolonged intervals, 
data are sometimes written to multiple 
small files because such a strategy allows 
files to be managed more effectively than 
one file written to a large-capacity vol-
ume. For systems that collect SDR data 
continuously for the purpose of record-
ing rare anomalous signal events, this 
multi-file collection strategy allows 
older files to be deleted to make space 
for new ones, thus extending the avail-
ability of past history to the size of the 
storage array in contrast to the capacity 
of a memory-based buffer.

In some systems, the GNSS samples 
may be interlaced with binary data 
from other sensors such as IMUs, laser 
scanners or cameras to achieve inher-
ent time synchronization between 
these sensors. In this case, additional 
metadata information is needed to 
extract GNSS samples from the file and, 

Cost/Benefit Justification for a GNSS SDR Toolbox
For GNSS SDR, the most numerically intensive computations involve correlation 
of hundreds of millions of signed integer samples for each second of processing. 
However, these samples are typically less than one byte. Through some straight-
forward pre-processing steps to reduce dynamic range, the result of correlation 
over a one-millisecond interval can usually be made to fit within 16-bit signed 
integers with negligible loss of performance. 

Hence, these structurally regular fixed-point computations can be parallelized 
by factors of 8 or 16 using 128-bit and 256-bit wide Streaming SIMD Extensions 
(SSE) or Advanced Vector Extensions (AVX), respectively. (AVX has been sup-
ported in all x86 processors shipping since 2011.) Further parallelization over the 
available number of logical processors (up to 8 in most consumer PCs) can yield 
up to 128× theoretical performance improvement compared to un-optimized 
code. 

Such optimizations require the correlation algorithm to be partitioned so that 
subsets of the computations can be performed independently in each processor. 
This type of “fine-grained” architecting of an algorithm to exploit the feature set 
of a particular generation of processors to the maximum extent possible is best 
done by human programmers as opposed to optimizing compilers. 

Because sample correlation is such a critical component of any GNSS SDR 
and the algorithm essentially does not change significantly with sampling rate 
or GNSS signal structure, the cost of low-level optimization can be justified by 
considering the subsequent time savings that can be gained. This is especially true 
if the correlation engine can be architected such that it supports a wide range of 
applications and use cases. 
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optionally, decode the sensor data.
Currently no standard exists within 

the PNT community that allows GNSS 
SDRs to work seamlessly with files writ-
ten by any SDR data-collection system. 
This means that the user is forced to set 
data decoding parameters in an ad hoc 
manner. When files from a different sys-
tem are sourced, these parameters and 
the decoder must be changed manu-
ally — a process that is prone to human 
error.

Part of the effort described in this 
article aims to address this issue so that 
files from any data collection system can 
be seamlessly integrated into any GNSS 
SDR processing platform. The proposed 
solution is to pair a metadata file with 
each binary data file. The metadata file 
includes all the information needed to 
integrate the SDR file into the processor 
and decode its contents. 

As the format for the metadata file, 
eXtensible Markup Language (XML) 
provides a desirable option. All oper-
ating systems and application develop-
ment suites support XML, which is a 
low-overhead human-readable format, 
thus providing a straightforward process 
to integrate it into any data collection 
system. Figure 1 shows an example of 
an SDR metadata file written in XML. It 
contains all of the necessary information 
to decode the multi-stream samples cor-
rectly as well as other information per-
taining to the data collection campaign.

The SDR toolbox uses this meta-
data mechanism to open and decode 
SDR data files from many data collec-
tion systems. When opening a specified 
SDR file, the reader automatically parses 
the XML file and imports the metadata 
into the MATLAB workspace as a struc-
ture. For multiple files, the user specifies 
the name of the first file along with the 
maximum number of one-millisecond 
blocks to be processed. This information 
is used to automatically find and splice 
the necessary files to fulfill the request.

Supporting a Wide Range 
of Research Applications
In broad terms, GNSS baseband signal 
processing can be divided into three 
stages. The following sections sum-
marize the features required in each of 

these stages to support a wide range of 
research applications.

Pre-Correlation Processing. As is well 
known, correlation losses become neg-
ligible for sample quantizations beyond 
two bits. However, this does not hold 
true in the presence of interference. In 
this case, we can use additional dynamic 
range to perform interference reduction 
processing prior to correlation. Typical 
pre-correlation processing includes sam-
ple covariance computation (for interfer-
ence detection and location) and digital 
filtering and excision techniques applied 
in the time and/or frequency domains.

The various types of pre-correlation 
processing that a researcher may want to 
apply to a GNSS processing application 
could be supported by including 1) an 
optimized sample statistics processor, 2) 
a sample masking processor for blank-
ing interference-dominated samples 
from being correlated, 3) a configu-
rable time-domain filter implementa-
tion (such as Direct-Form II), and 4) a 
fast Fourier transform (FFT) engine for 
implementing frequency-domain inter-
ference detection and excision tech-
niques. 

These processing blocks could be 
integrated into the sample streams using 
a software plug-in interface. Since imple-
mentations already exist in MATLAB, 

developing a fully featured pre-correla-
tion processor was considered a lower 
priority compared to the correlation 
engine. However, Version 3 of the tool-
box does include a sample statistics and 
noise processor as described in below.

Correlation Processing. Three fun-
damental techniques exist for sample 
correlation: time-domain correlation, 
parallel frequency correlation, and par-
allel code correlation. The latter two 
methods provide a large number of cor-
relation outputs corresponding to Dop-
pler frequency offsets or code phases, 
respectively. 

The limited resolution of parallel 
correlation algorithms and the inability 
to steer the local replicas that produce 
them with adequate precision (par-
ticularly with respect to code phase) 
preclude their use in precision signal 
tracking applications. The parallel code 
correlation algorithm is most efficient 
when researchers need a large swath 
of code correlation space observability 
such as during signal acquisition. Other 
uses include correlation space monitor-
ing (also known as delay-Doppler map 
monitoring) for applications such as 
spoofer detection. 

In any case, a low update rate on the 
order of one to several seconds is typi-
cally sufficient for monitoring applica-

FIGURE 1  Proposed GNSS SDR metadata XML schema
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tions. As MATLAB already contains optimized FFT implemen-
tations to write parallel correlation algorithms, no attempt was 
made in this version of the toolbox to accelerate FFT-based 
parallel correlators.

Many of the GNSS SDR research applications described here 
require several more time-domain correlators than the typical 
two to five needed for traditional signal tracking. Supporting 
a given processing algorithm for all current and future GNSS 
signals can become cumbersome due to their various signal 
structures.

The ability to instantiate any number of correlators per 
channel (where each channel can be setup for any GNSS signal 
structure), and have all these correlators and channels managed 
with little-to-no user intervention is one of the most desired 
features of a universal GNSS SDR. This is because it allows 
the researcher to focus on higher-level algorithm development 
without having to be concerned with correlator implementation 
details. Bringing this idea to fruition was one of the major goals 
and contributions of this effort. The following section describes 
the architecture of these universal GNSS correlators.

Post-Correlation Processing. Following sample correlation, 
the data rate is reduced to an easily handled value of one kilo-
hertz. Most of the specialized GNSS signal processing algo-
rithm development occurs in this post-correlation domain. 
This is also where the strengths of high-level algorithm devel-
opment tools such as MATLAB shine in terms of a researcher 
being able to modify scripts and visualize the effects quickly 
and easily. 

An SDR toolbox must feature an interface to and from this 
domain that is both efficient and intuitive in terms of configur-
ing and controlling the various types of channels and correla-
tors as required by the researcher.

Functional Architecture
This article serves as an introduction to Version 3 of the GNSS 
SDR toolbox. This version’s functional architecture is signifi-
cantly different to that of the previous version (v2) that was 
described in the paper by S. Gunawardena (2013) listed in Addi-
tional Resources. 

Figure 2 shows the high-level functional block diagram of 
the GNSS SDR toolbox for MATLAB. Sampled data streams 
are read from source SDR data files, followed by buffering and 
decoding into one or more data streams. The streams are fed 
into two main signal-processing blocks: a stream statistics and 

noise processor, and a multi-channel ChipShape correlation 
engine. 

To maintain a regular channel architecture that is not spe-
cific to any GNSS signal structure, the toolbox uses memory 
codes exclusively for all pseudorandom noise and masking 
sequences. These codes are fetched from files and saved in a 
cache that is accessible to both processing blocks. This code 
cache is fully configurable by the user such that unused codes 
can be swapped out for new ones at runtime.

The stream statistics and noise processor computes sample 
means, variances, and histograms for every one-millisecond 
block of samples. Sample statistics provide a valuable low-laten-
cy “situational awareness” indication of in-band interference. 
Researchers can use the raw one-millisecond outputs of this 
processor to prototype a range of interference detection/moni-
toring algorithms. The toolbox includes commands to disable 
these computations if not used.

In GNSS receivers, a channel control state machine is typi-
cally used to handle the transition from acquisition to steady-
state tracking (and subsequent reacquisition to tracking fol-
lowing loss-of-lock events). A low-latency signal-to-noise ratio 
(SNR) estimate is used as one of the inputs to this controller. 
Hence, the SNR calculation requires an estimate of noise power, 
in general for each sample stream. 

Some receivers employ a spare channel to compute this noise 
estimate by correlating with a PRN sequence that is known to 
be absent in the data. The toolbox implements these noise cor-
relators within the stream processor block. To reduce computa-
tion load, noise correlators implement only the real component, 
and the numerically controlled oscillator (NCO) phase register 
sizes are also smaller than those used for tracking channels. 

As with the statistics processes, each noise correlator can be 
turned off to improve runtimes. Because these noise correla-
tors can be set to correlate with any of the configured memory 
codes (including for example, a dedicated random-noise code 
of any length), the likelihood of significant cross-correlation 
with in-band signals can be minimized.

Version 2 provided instantiation of any number of correlator 

FIGURE 2  GNSS SDR Toolbox Version 3 high-level functional block 
diagram
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points per channel, where each could be 
connected to one or more universal code 
generators with independently variable 
relative code phase delay. Even though 
this architecture facilitates a wide range 
of applications, this earlier version 
repeated the underlying sample-level 
multiply-accumulate operations when 
points were placed with less than one-
chip separation from each other. 

Version 3 eliminates these repeated 
operations by natively performing Chip-
Shape correlation on an array of points. 
Ranges of points from this ChipShape 
output vector can be combined (at the 
user level) to form any desired points 
of the traditional triangular correla-
tion function. For binary offset carrier 
(BOC) signals, the need for a subcarrier 
replica in the correlation process is also 
eliminated because the user can apply 
any subcarrier function as part of the 
ChipShape-to-triangular conversion 
step described previously. Further, by 
applying chip masking patterns that 
are specific to the spreading code (com-
bined with long coherent integration), 
transients of the underlying signal can 
be observed at high fidelity. 

This technique has applications in 
advanced multipath mitigation, signal 
quality monitoring and authentication. 
The paper by S. Gunawardena et alia
(2012) listed in Additional Resources 
provides an overview of ChipShape 
processing, the concept of chip mask-
ing, and its applications in signal quality 
monitoring.

Figure 3 shows the functional archi-
tecture of a Version 3 channel. As with 
previous versions, the user can instanti-
ate any number of these channels in the 
toolbox. The main user-configurable 
channel parameters are shown in red. 

The Stream Index parameter selects 
the input data stream to be processed by 
a channel. Carrier wipeoff is performed 
on this selected stream using the replica 
generated by the carrier NCO — con-
trolled by phase-rate commands updat-
ed each millisecond. The carrier-wiped 
stream is then sent to independent banks 
of correlators that perform ChipShape 
correlation for a one-millisecond block of 
samples. The result is a ChipShape vector 
for each bank that is transferred to the 

user space (i.e., MATLAB workspace).
Each ChipShape bank is configured 

independently by means of three param-
eters: the number of correlation points 
per chip NC, the whole number of chips 
spanning to the early side NE (relative 
to code NCO integer phase), and the 
whole number of chips spanning to the 
late side, NL. Hence, the size of the Chip-
Shape vector is given by NC·(NE + NL + 1), 
and the spacing between points is given 
by 1/NC.

As shown in Figure 3, ChipShape 
processing essentially splits traditional 
correlation into partial accumula-
tions, where the fractional state of the 
code NCO determines the array index 
applicable to the partial accumulation 
being processed. Splitting the correla-
tion operation in this way maximizes 
opportunities for these accumulations 
to be combined in user space to form 
numerous correlation and/or code dis-
criminator functions depending on the 
application. Another welcome benefit is 
that this method reduces the dynamic 
range required to prevent overflow of 
these accumulators by a factor of 1/NC
compared to a traditional correlator.

Not shown in Figure 3 are the three 
levels of enable/disable logic featured 
in the toolbox to improve runtimes: 
1) enable/disable entire channels that 
were instantiated (also disables chan-

nel NCOs), 2) enable/disable banks that 
were instantiated within a channel, and 
3) enable/disable individual points with-
in a given bank.

If a ChipShape correlator is imple-
mented as described thus far, the output 
vector would simply be the differential 
of a traditional triangular correlation 
function. Although useful, it does not 
provide full insight into chip transition 
edges and their precise zero crossings. 
The rising, falling, and stationary parts 
of a GNSS signal’s underlying code 
sequence can be recovered by correlat-
ing with a local replica that corresponds 
only to these events (e.g., to recover the 
rising-edge, keep all -1 to +1 chip transi-
tions in the code sequence and set others 
to zero). 

As shown in Figure 3, this function-
ality is implemented by multiplying the 
carrier-wiped sample stream with an 
optional masking sequence. (In actual-
ity the mask bit is used to disable accu-
mulation for that sample.) Each bank is 
configured independently to point to 
any code and/or mask sequence stored 
in the Code Cache shown in Figure 2.

Applying the 
ChipShape Correlator
The native ChipShape correlator 
architecture of Version 3 significantly 
expands possibilities for advanced GNSS 

FIGURE 3  Functional architecture of a Version 3 ChipShape correlator channel
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signals-based research beyond what was 
possible with Version 2. Among these 
are the following examples. 

Built-In Acquisition and Rapid-Reac-
quisition. A dedicated channel can be 
instantiated for acquisition and/or rapid 
reacquisition. This channel’s ChipShape 
vector would span a significantly larger 
range of integer chip offsets with coarse 
inter-point spacing (e.g. NC=2 for BPSK, 
NC=4 for BOC(1,1), and so on). A given 
PRN can be acquired by pointing to the 
corresponding memory code and pro-
gressively searching for sets of code phase 
offsets and Doppler frequencies over time. 

For reacquisition, the channel’s car-
rier and code NCOs are set with best 
estimates of Doppler frequency and 
codephase, respectively. In this case, 
ChipShape points corresponding to 
unnecessary span may be disabled to 
reduce runtimes. An estimate from the 
noise processor can be used as the basis 
for setting up the acquisition detection 
threshold.

Spoofer Monitoring. A civilian GPS 
spoofing scenario described in the paper 
by T. E. Humphreys et alia (Additional 
Resources) attempts to pull a receiver 
tracking channel away from the genu-
ine signal’s correlation peak by coercing 
it to lock on to a stronger peak produced 
by the spoofer. Even if Doppler offset 
and codephase are perfect matches to 
the genuine signal, the superposition 
of the two would cause significant dis-
tortion of the ChipShape function due 
to the spoofer’s RF transmitter transfer 
function (which itself is a function of its 
characteristic analog RF components 
including modulators, amplifiers, filters 
and antenna). 

A monitor/detector could be imple-
mented using the GNSS SDR toolbox 
based on a high-resolution ChipShape 
output computed by an additional bank 
in each channel. To reduce runtimes 
(which corresponds to reducing power 
in a practical application), this bank can 
be activated at periodic intervals or at 
the onset of in-band noise power fluc-
tuations (as monitored by sample vari-
ance and/or noise correlators), which 
is a “cheaper” first indicator of possible 
in-band interference.

Chip Edge–Based Code Tracking for 

Advanced Multipath Mitigation. As evident 
from the ChipShape functions shown 
in the examples section, zero-crossing 
rising-edge and falling-edge transitions 
are the highest-frequency components 
attainable from any received GNSS sig-
nal through correlation processing. This 
is true regardless of signal structure. 
Hence, code tracking techniques that 
are primarily based on these transitions 
stand to produce the best pseudorange 
accuracy and multipath mitigation per-
formance possible for any receiver of 
that bandwidth. Researchers can use the 
highly configurable ChipShape outputs 
produced by this toolbox as an enabler 
for researching novel edge-based code 
tracking techniques for precision GNSS 
applications.

GNSS Signal Authentication. Variations 
present in signal transmission payloads 
of satellites are known to cause subtle 
signal deformations that are detectable 
using appropriate processing techniques. 
Not surprisingly, ChipShape functions 
are the cornerstone of these techniques. 
For authentication applications, the 
deformation caused only by the satellite 
payload (as a function of nadir angle) 
must be isolated from nuisance compo-
nents that include multipath, receiver 
antenna/front-end transfer function 
(including any variations due to tem-
perature, vibration, and aging), and 
ionospheric effects.

Signal-Processing Applications
This section provides two GNSS signal-
processing examples that illustrate the 
configuration and capabilities of the 
toolbox.

Tracking and Eye Diagram Extraction 
for BPSK(1) Signals: GPS L1 C/A. For this 
example, a Version 3 channel was con-
figured with five banks as follows:
•	 Bank 1: NC=120, NE=NL=1, Code: 

“GPS C/A PRN,” Mask: “None”
•	 Bank 2: NC=120, NE=NL=1, Code: 

“GPS C/A PRN,” Mask: “GPS C/A 
PP PRN”

•	 Bank 3: NC=120, NE=NL=1, Code: 
“GPS C/A PRN,” Mask: “GPS C/A 
PN PRN”

•	 Bank 4: NC=120, NE=NL=1, Code: 
“GPS C/A PRN,” Mask: “GPS C/A 
NP PRN”

•	 Bank 5: NC=120, NE=NL=1, Code: 
“GPS C/A PRN,” Mask: “GPS C/A 
NN PRN”

where PRN is the C/A code PRN number 
used and “PP,” “PN,” “NP,” and “NN” 
correspond to masking codes in which 
adjacent positive (P) and negative (N) 
chip events are isolated from the origi-
nal C/A code. (The distribution includes 
a utility that generates these and other 
masking code files from a given PRN 
code file.)

The GPS L1 C/A signal was pre-
acquired using the FFT-based “Quick 
Acquisition” utility included in the 
distribution. The latest distribution 
includes a fully open-source, single 
channel–tracking script that features a 
built-in tracking state controller. This 
state machine was configured to pull-in 
from acquisition, perform bit synchro-
nization, and settle with the following 
steady-state tracking loop parameters: 
20 milliseconds pre-detection integra-
tion time, 18-hertz, third-order phase 
locked loop (PLL) bandwidth, one-hertz 
carrier-aided first-order delay locked 
loop (DLL) bandwidth, and coherent 
early-minus-late code phase discrimi-
nator with early-late correlator spacing 
of 0.0167 chips. 

The final state activates banks 2 thru 
5. Then, using the navigation databit sign 
derived from Bank 1 (i.e., sign[Prompt-
Q]) to keep rising, falling, positive, and 
negative components of the underlying 
signal together, the one-millisecond 
ChipShape outputs are coherently com-
bined for approximately 100 seconds. 
Accompanying figures show the result-
ing normalized ChipShape outputs.

Figure 4 shows the GPS C/A code eye 
diagram from a GPS front-end module 
with approximately four megahertz 
bandwidth. The effect of narrow front-
end bandwidth compared to the results 
depicted in the following two figures is 
clearly evident.

Figure 5 and Figure 6 show eye dia-
grams for GPS Block IIF-6 (SVN67 
PRN06) at 78-degree elevation processed 
from data obtained with the TRIGR 
GNSS data collection system developed 
by the Ohio University Avionics Engi-
neering Center. The final-stage IF filters 
for these two data streams included a 
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transversal surface acoustic wave (SAW) 
filter with 24-megahertz/3-decibel band-
width and a lumped element elliptic 
response filter comprised of a series of 
coaxial bandpass filters with 3-decibel 
bandwidth of 18 megahertz. 

The bandwidth is sufficiently high 
in both eye diagrams to observe the 10 
cycles of ripple that occurs within a C/A 
chip. As described in the article by S. 
Gunawardena et alia (2012b), these oscil-
lations have been determined to be cross-
talk from the P(Y) code modulation. 

Careful observation of time intervals 
just prior to a chip transition in Figure 
6 reveals a slight buildup of power. 
This effect, not observable in Figure 5, 
is primarily due to the finite impulse 
response-type characteristic of trans-
versal SAW filters as will be reported in 
detail in a forthcoming presentation by 
S. Gunawardena et alia (2014) at the ION 
GNSS+ in September.

Tracking and E1C /E1B Subcarrier 
Extraction for CBOC(6,1,1/11) Signals: 
Galileo E1. For this example, a Version 3 
channel was configured with four banks 
as follows:
•	 Bank 1: NC=120, NE=NL=1, Code: 

“GAL E1C PRN,” Mask: “None”
•	 Bank 2: NC=120, NE=NL=1, Code: 

“GAL E1B PRN,” Mask: “None”
•	 Bank 3: NC=120, NE=NL=1, Code: 

“GAL E1C PRN,” Mask: “GAL E1C 
FF PRN”

•	 Bank 4: NC=120, NE=NL=1, Code: 
“GAL E1C PRN,” Mask: “GAL E1B 
FF PRN”

where “FF” corresponds to masking 
sequences where adjacent chips with the 
same sign are isolated from the original 
spreading code.

Banks 1 and 2 are used for pilot sig-
nal tracking and data symbol extraction, 
respectively. The ChipShape outputs 
from these banks are correlated with 
the ideal CBOC subcarrier functions to 
produce traditional early, prompt, and 
late correlation points. Banks 2, 3, and 
4 are initially deactivated. After steady-
state tracking is reached, the ChipShape 
outputs from Banks 3 and 4 are coher-
ently integrated for approximately 100 
seconds by performing symbol wipeoff 
using the known overlay symbols and the 

FIGURE 4  GPS L1 C/A signal eye diagram processed from a front-end with ~4-MHz pre-corre-
lation bandwidth

ChipShape, GPS PRN28, Bw=4MHz

Relative CodePhase [chips]

N
or

m
al

iz
ed

 M
ag

ni
tu

de

1.5

1

0.5

0

-0.5

-1

-1.5

PP Q
PN Q
NP Q
NN Q
PP I
PN I
NP I
NN I

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

FIGURE 5 GPS L1 C/A eye diagram processed from a front-end with 18-MHz pre-correlation 
bandwidth

ChipShape, GPS BLK IIF-6 (PRN6) EI=78 deg. Bw=18MHz
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FIGURE 6  GPS L1 C/A eye eiagram processed from a front-end with 24 MHz pre-correlation 
bandwidth

ChipShape, GPS BLK IIF-6 (PRN6) EI=78 deg. Bw=24MHz
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data symbols derived from the prompt 
correlator of Bank 2, respectively.

Similar to the GPS C/A code tracking 
example, the channel state machine was 
configured to obtain the same steady-
state tracking parameters. However, 
instead of the bit synchronization state 
used for GPS C/A code, the Galileo E1 
tracking demo uses the included overlay 
code synchronizer. 

Figure 7 shows the one-millisecond 
prompt correlator outputs (pilot and 
data) from the acquisition pull-in state 
to just after activation of banks 2–4.

Figure 8 and Figure 9 show the Gali-
leo FM3 E1 CBOC(6,1,1/11) pilot and 
data component subcarriers as observed 
from front-end bandwidths of 18 and 24 
megahertz, respectively. As to be expect-
ed, the multi-level subcarrier functions 
experience more distortion with the 
18-megahertz front-end compared to 
24 megahertz. Also notice that for tra-
ditional early-minus-late discriminator-
based code tracking, zero crossings do 
not occur at zero codephase due to band-
limiting.

Conclusion
This article introduced the GNSS SDR 
Toolbox for MATLAB (Version 3). This 
software performs GNSS SDR baseband 
signal processing using an optimized 
multi-threaded approach. The main 
motivation behind the development of 
this tool was to accelerate offline pro-
cessing times for large GNSS SDR datas-
ets. The toolbox improves runtimes by at 
least a factor of 30 compared to equiva-
lent MATLAB-only scripts.

The main feature of Version 3 is a 
multi-channel universal GNSS Chip-
Shape correlation engine that can be 
used as the foundation for advanced 
GNSS receiver development, algorithm 
design, and prototyping. It can also be 
used as an educational tool for demon-
strating advanced GNSS signal process-
ing techniques. 

The Version 3 distribution contains 
numerous open-source scripts that 
demonstrate the setup and use of all 
major features. The toolbox is avail-
able free of charge for educational and 
non-commercial research use. The 
software and additional resources are 

FIGURE 7  From example of tracking and E1C/E1B subcarrier extraction for CBOC: one-millisec-
ond Galileo E1C (pilot) and E1B (data) prompt correlator outputs over time

Galileo FM3 1 ms Prompt Correlator Outputs
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FIGURE 8  Galileo FM3 CBOC(6,1,1/11) E1C and E1B subcarrier functions processed from a front-
end with 18 MHz pre-correlation bandwidth

Galileo FM3 CBOC(6,1,1/11) SubCarrier. EI: 85 deg. BW: 18 MHz
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FIGURE 9  Galileo FM3 CBOC(6,1,1/11) E1C and E1B subcarrier functions processed from a front-
end with 24 MHz pre-correlation bandwidth

Galileo FM3 CBOC(6,1,1/11) SubCarrier. EI: 85 deg. BW: 24MHz
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available through the author’s blog: 
<ChameleonChips.com>. Minimum 
software requirements needed to run the 
toolbox include Microsoft Windows (32 
or 64-bit) and MATLAB version 2007B 
or above.
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